GAlib: A C++ Library of Genetic Algorithm Components

version 2.4
Documentation Revision B

August 1996

Matthew Wall
Mechanical Engineering Department

Massachusetts Institute of Technology

http://lancet.mit.edu/ga/
galib-request@mit.edu

Copyright © 1996 Matthew Wall
all rights reserved

GAlib is a C++ library of genetic algorithm objects. The library includes tools for using
genetic algorithms to do optimization in any C++ program using any representation
and any genetic operators. This documentation includes an extensive overview of how
to implement a genetic algorithm, the programming interface for GAlib classes, and
examples illustrating customizations to the GAlib classes.

¢93 This work was supported by the Leaders for Manufacturing Program



Contents

GAlib: A C++ Library of Genetic Algorithm Components

Licensing and Copyright Issues 1
GAlib For-profit User/Distributor License Agreement 1
GAlib Not-for-profit User License Agreement 1
The GNU portions of the GAlib distribution 1
The standard MIT copyright notice and disclaimer 2

Features 3
General Features 3
Algorithms, Parameters, and Statistics 3
Genomes and Operators 3

Overview 5
The Genetic Algorithm 6
Defining a Representation 7
The Genome Operators 7
The Population Object 8
Objective Functions and Fitness Scaling 8
So what does it look like in C++? 9
What can the operators do? 10
How do | define my own operators? 11
What about deriving my own genome class? 13

Class Hierarchy 15
GAlib Class Hierarchy - Pictorial 15
GAlib Class Hierarchy - Outline 16

Programming Interface 17
Global Typedefs and Enumerations 17
Global Variables and Global Constants 17
Function Prototypes 17
Parameter Names and Command-Line Options 18
Error Handling 20
Random Number Functions 21
GAGeneticAlgorithm 22
GADemeGA 27
GAlncrementalGA 29
GASiIimpleGA 31
GASteadyStateGA 32
Terminators 34
Replacement Schemes 35



Contents

GAGenome 36
GAlDArrayGenome<T> 39
GAl1DArrayAlleleGenome<T> 41
GA2DArrayGenome<T> 42
GA2DArrayAlleleGenome<T> 44
GA3DArrayGenome<T> 45
GA3DArrayAlleleGenome<T> 47
GAI1DBinaryStringGenome 48
GAZ2DBinaryStringGenome 50
GA3DBinaryStringGenome 52
GABiIn2DecGenome 54
GAListGenome<T> 56
GARealGenome 57
GAStringGenome 58
GATreeGenome<T> 59
GAEvalData 60
GABiIn2DecPhenotype 61
GAAlleleSet<T> 62
GAAlleleSetArray<T> 64
GAParameter and GAParameterList 65
GAStatistics 67
GAPopulation 70
GAScalingScheme 75
GASelectionScheme 77
GAArray<T> 79
GABinaryString 81
GAList<T> and GAListlter<T> 82
GATree<T> and GATreelter<T> 85
Customizing GAlib 89
Deriving your own genome class 89
Genome Initialization 91
Genome Mutation 91
Genome Crossover 92
Genome Comparison 92
Genome Evaluation 93
Population Initialization 93
Population Evaluation 93
Scaling Scheme 93
Selection Scheme 94
Genetic Algorithm 96
Termination Function 96
Descriptions of the Examples 98




Licensing and Copyright Issues

Licensing and Copyright Issues

The GAlib source code is not in the public domain, but it is available at no cost for non-profit purposes.
If you would like to use GAlib for commercial purposes, for-profit single user and distributor licenses
are available. All of GAlib (source and documentation) is protected by the Berne Convention. You may
copy and modify GAlib, but by doing so you agree to the terms of the not-for-profit license.

GAlib For-profit User/Distributor License Agreement

Please contact the MIT Technology Licensing Office at 617.253.6966 or tlo@mit.edu.

GAlib Not-for-profit User License Agreement

1. You may copy and distribute copies of the source code for GAlib in any medium provided that you
consipicuously and appropriately give credit to the author and keep intact all copyright and disclaimer
notices in the library.

2. You may modify your copy (copies) of GAlib or any portion thereof, but you may not distribute
modified versions of GAlib. You may distribute patches to the original GAlib as separate files along
with the original GAlib.

3. You may not charge anything for copies of GAlib beyond a fair estimate of the cost of media and
computer/network time required to make and distribute the copies.

4. Incorporation of GAlib or any portion thereof into commercial software, distribution of GAlib for-
profit, or use of GAlib for other for-profit purposes requires a special agreement with the the MIT
technology licensing office (TLO).

5. Any publications of work based upon experiments that use GAlib must include a suitable
acknowledgement of GAlib. A suggested acknowledgement is: "The software for this work used the
GAlib genetic algorithm package, written by Matthew Wall at the Massachusetts Institute of
Technology."

6. The author of GAlib and MIT assume absolutely no responsibility for the use or misuse of GAlib. In
no event shall the author of GAlib or MIT be liable for any damages resulting from use or performance
of GAlib.

The GNU portions of the GAlib distribution

The portions of GAlib (see below) that contain code from the GNU g++ library are covered under the
terms of the GNU Public License. As such they are freely available and do not fall under the terms of
the GAlib licensing conditions above. The portions of GAlib that are based upon GNU code are all in
the 'gnu’ directory in the examples directory (in GAlib release 2.3.2 and later).

GAlib Version 2.4, Document Revision B 1 19-Aug-96



Licensing and Copyright Issues

The standard MIT copyright notice and disclaimer

As a work developed using MIT resources and MIT funding, the GAlib source code copyright is owned
by the Massachusetts Institute of Technology. All rights are reserved.

Copyright (c) 1995-1996 Massachusetts Institute of Technology

Permission to use, copy, modify, and distribute this software and its documentation for any non-
commercial purpose and without fee is hereby granted, provided that

the above copyright notice appear in all copies
both the copyright notice and this permission notice appear in supporting documentation

the name of M.L.T. not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission.

M.L.T. makes no representations about the suitability of this software for any purpose. It is provided "as
is" without express or implied warranty.

M.I1.T. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL M.I.T. BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

GAlib Version 2.4, Document Revision B 2 19-Aug-96



Features: General Features

Features

General Features

Many examples are included illustrating the use of various GAlib features, class derivations,
parallelization, deterministic crowding, travelling salesman, DeJong, and Royal Road problems.

The library has been used on various DOS/Windows, Windows NT/95, MacOS, and UNIX
configurations. GAlib compiles without warnings on most major compilers.

Templates are used in some genome classes, but GAlib can be used without templates if your
compiler does not understand them.

Four random number generators are included with the library. You can select the one most
appropriate for your system, or use your own.

Algorithms, Parameters, and Statistics

GAlib can be used with PVM (parallel virtual machine) to evolve populations and/or individuals in
parallel on multiple CPUs.

Genetic algorithm parameters can be configured from file, command-line, and/or code.

Overlapping (steady-state GA) and non-overlapping (simple GA) populations are supported. You
can also specify the amount of overlap (% replacement). The distribution includes examples of other
derived genetic algorithms such as a genetic algorithm with sub-populations and another that uses
deterministic crowding.

New genetic algorithms can be quickly tested by deriving from the base genetic algorithm classes
in the library. In many cases you need only overide one virtual function.

Built-in termination methods include convergence and number-of-generations. The termination
method can be customized for any existing genetic algorithm class or for new classes you derive.

Speciation can be done with either Delong-style crowding (using a replacement strategy) or
Goldberg-style sharing (using fitness scaling).

Elitism is optional for non-overlapping genetic algorithms.

Built-in replacement strategies (for overlapping populations) include replace parent, replace
random, replace worst. The replacement operator can be customized.

Built-in selection methods include rank, roulette wheel, tournament, stochastic remainder sampling,
stochastic uniform sampling, and deterministic sampling. The selection operator can be customized.

"on-line" and "off-line" statistics are recorded as well as max, min, mean, standard deviation, and
diversity. You can specify which statistics should be recorded and how often they should be flushed
to file.

Genomes and Operators

Chromosomes can be built from any C++ data type. You can use the types built-in to the library
(bit-string, array, list, tree) or derive a chromosome based on your own objects.

GAlib Version 2.4, Document Revision B 3 19-Aug-96



Features: Genomes and Operators

Built-in chromosome types include real number arrays, list, tree, 1D, 2D, and 3D arrays, 1D, 2D,
and 3D binary string. The binary strings, strings, and arrays can be variable length. The lists and
trees can contain any object in their nodes. The array can contain any object in each element.

All chromosome initialization, mutation, crossover, and comparison methods can be customized.
Built-in initialization operators include uniform random, order-based random, and initialize-to-zero.

Built-in mutation operators include random flip, random swap, Gaussian, destructive, swap subtree,
swap node.

Built-in crossover operators include partial match, ordered, cycle, single point, two point, even, odd,
uniform, node- and subtree-single point.

Dominance and Diploidy are not explicitly built in to the library, but any of the genome classes in
the library can easily be extended to become diploid chromosomes.

Objective function
Obijective functions can be population- or individual-based.

If the built-in genomes adequately represent your problem, a user-specified objective function is the
only problem-specific code that must be written.

GAlib Version 2.4, Document Revision B 4 19-Aug-96



Overview: Genomes and Operators

Overview

This document outlines the contents of the library and presents some of the design philosophy behind
the implementation. Some source code samples are provided at the end of the page to illustrate basic
program structure, operator capabilities, operator customization, and derivation of new genome classes.

When you use the library you will work primarily with two classes: a genome and a genetic algorithm.
Each genome instance represents a single solution to your problem. The genetic algorithm object defines
how the evolution should take place. The genetic algorithm uses an objective function (defined by you)
to determine how 'fit' each genome is for survival. It uses the genome operators (built into the genome)
and selection/replacement strategies (built into the genetic algorithm) to generate new individuals.

There are three things you must do to solve a problem using a genetic algorithm:
1. Define a representation
2. Define the genetic operators
3. Define the objective function

GAlib helps you with the first two items by providing many examples and pieces from which you can
build your representation and operators. In many cases you can use the built-in representations and
operators with little or no modification. The objective function is completely up to you. Once you have a
representation, operators, and objective measure, you can apply any genetic algorithm to find better
solutions to your problem.

When you use a genetic algorithm to solve an optimization problem, you must be able to represent a
single solution to your problem in a single data structure. The genetic algorithm will create a population
of solutions based on a sample data structure that you provide. The genetic algorithm then operates on
the population to evolve the best solution. In GAlib, the sample data structure is called a GAGenome
(some people refer to it as a chromosome). The library contains four types of genomes: GAListGenome,
GATreeGenome, GAArrayGenome, and GABinaryStringGenome. These classes are derived from the
base GAGenome class and a data structure class as indicated by their names. For example, the
GAListGenome is derived from the GAList class as well as the GAGenome class. Use a data structure
that works with your problem definition. For example, if you are trying to optimize a function that
depends on 5 real numbers, then use as your genome a 1-dimensional array of floats with 5 elements.

There are many different types of genetic algorithms. GAlib includes three basic types: 'simple’,
'steady-state’, and 'incremental’. These algorithms differ in the way that they create new individuals and
replace old individuals during the course of an evolution.

GAlib provides two primary mechanisms for extending the capabilities of built-in objects. First of all
(and most preferred, from a C++ point of view), you can derive your own classes and define new
member functions. If you need to make only minor adjustments to the behavior of a GAlib class, in
most cases you can define a single function and tell the existing GAlib class to use it instead of the
default.

Genetic algorithms, when properly implemented, are capable of both exploration (broad search) and
exploitation (local search) of the search space. The type of behavior you'll get depends on how the
operators work and on the 'shape’ of the search space.

GAlib Version 2.4, Document Revision B 5 19-Aug-96



Overview: The Genetic Algorithm

The Genetic Algorithm

The genetic algorithm object determines which individuals
should survive, which should reproduce, and which
should die. It also records statistics and decides how long

the evolution should continue. Typically a genetic *
algorithm has no obvious stopping criterion. You must tell
the algorithm when to stop. Often the number-of-

generations is used as a stopping measure, but you can *
use goodness-of-best-solution, convergence-of-population,
or any problem-specific criterion if you prefer. *

initialize
population

select individuals
for mating

mate individuals
to produce offspring

The library contains four flavors of genetic algorithms. The

S ) . . . mutate offspring
first is the standard 'simple genetic algorithm' described

by Goldberg in his book. This algorithm uses non- {

overlapping populations and optional elitism. Each insert offspring
generation the algorithm creates an entirely new into population
population of individuals. The second is a 'steady-state {

genetic algorithm' that uses overlapping populations. In are stopping
this variation, you can specify how much of the population criteria satisfied?

should be replaced in each generation. The third variation
is the ‘incremental genetic algorithm’, in which each o
generation consists of only one or two children. The finish
incremental genetic algorithms allow custom replacement
methods to define how the new generation should be
integrated into the population. So, for example, a newly generated child could replace its parent,
replace a random individual in the population, or replace an individual that is most like it. The fourth
type is the 'deme’ genetic algorithm. This algorithm evolves multiple populations in parallel using a
steady-state algorithm. Each generation the algorithm migrates some of the individuals from each
population to one of the other populations.

In addition to the basic built-in types, GAlib defines the components you'll need to derive your own
genetic algorithm classes. The examples include a few of these derivations including (1) a genetic
algorithm that uses multiple populations and ‘'migration’ between populations on multiple CPUs, and
(2) a genetic algorithm that does 'deterministic crowding' to maintain different species of individuals
during the evolution.

The base genetic algorithm class contains operators and data common to most flavors of genetic
algorithms. When you derive your own genetic algorithm you can use these member data and
functions to keep track of statistics and monitor performance.

The genetic algorithm contains the statistics, replacement strategy, and parameters for running the
algorithm. the population object, a container for genomes, also contains some statistics as well as
selection and scaling operators. A typical genetic algorithm will run forever. The library has built in
functions for specifying when the algorithm should terminate. These include terminate-upon-
generation, in which you specify a certain number of generations for which the algorithm should run,
and terminate-upon-convergence, in which you specify a value to which the best-of-generation score
should converge. You can customize the termination function to use your own stopping criterion.

The number of function evaluations is a good way to compare different genetic algorithms with various
other search methods. The GAlib genetic algorithms keep track of both the number of genome
evaluations and population evaluations.

GAlib Version 2.4, Document Revision B 6 19-Aug-96



Overview: Defining a Representation

Defining a Representation

Use a data structure that is appropriate for your problem. If you are optimizing a function of real
numbers, use real numbers in your genome. If a solution to your problem can be represented with
some imaginary numbers and some integer values, define a genome with these characteristics.

Defining an appropriate representation is part of the art of using genetic algorithms (and at this point, it
is still an art, not a science). Use a representation that is minimal but completely expressive. Your
representation should be able to represent any solution to your problem, but if at all possible you
should design it so that it cannot represent infeasible solutions to your problem. Remember that if the
genome can represent infeasible solutions then the objective function must be designed to give partial
credit to infeasibles.

The representation should not contain information beyond that needed to represent a solution to the
problem. Although there may be merit in using a representation that contains 'extra‘ genetic material,
unless properly implemented (in concert with the objective function and in full consideration of the type
and characteristics of the search space), this tends to increase the size of the search space and thus hinder
the performance of the genetic algorithm.

The number of possible representations is endless. You may choose a purely numeric representation
such as an array of real numbers. These could be implemented as real numbers, or, in the Goldberg-
style of a string of bits that map to real numbers (beware that using real numbers directly far out-
performs the binary-to-decimal representation for most problems, especially when you use reasonable
crossover operators). Your problem may depend on a sequence of items, in which case an order-based
representation (either list or array) may be more appropriate. In many of these cases, you must choose
operators that maintain the integrity of the sequence; crossover must generate reordered lists without
duplicating any element in the list. Other problems lend themselves to a tree structure. Here you may
want to represent solutions explicitly as trees and perform the genetic operations on the trees directly.
Alternatively, many people encode trees into an array or parsable string, then operate on the string.
Some problems include a mix of continuous and discrete elements, in which case you may need to
create a new structure to hold the mix of information. In these cases you must define genetic operators
that respect the structure of the solution. For example, a solution with both integer and floating parts
might use a crossover that crosses integer parts with integer parts and floating parts with floating parts,
but never mixes floating parts with integer parts.

Whichever representation you choose, be sure to pick operators that are appropriate for your
representation.

The Genome Operators

Each genome has three primary operators: initialization, mutation, and crossover. With these operators
you can bias an initial population, define a mutation or crossover specific to your problem's
representation, or evolve parts of the genetic algorithm as your population evolves. GAlib comes with
these operators pre-defined for each genome type, but you can customize any of them.

The initialization operator determines how the genome is initialized. It is called when you initialize a
population or the genetic algorithm. This operator does not actually create new genomes, rather it 'stuffs'
the genomes with the primordial genetic material from which all solutions will evolve. The population
object has its own initialization operator. By default this simply calls the initialization operators of the
genomes in the population, but you can customize it to do whatever you want.

The mutation operator defines the procedure for mutating each genome. Mutation means different
things for different data types. For example, a typical mutator for a binary string genome flips the bits
in the string with a given probability. A typical mutator for a tree, on the other hand, would swap
subtrees with a given probability. In general, you should define a mutation that can do both exploration

GAlib Version 2.4, Document Revision B 7 19-Aug-96



Overview: The Population Object

and exploitation; mutation should be able to introduce new genetic material as well as modify existing
material. You may want to define multiple types of mutation for a single problem.

The crossover operator defines the procedure for generating a child from two parent genomes. Like the
mutation operator, crossover is specific to the data type. Unlike mutation, however, crossover involves
multiple genomes. In GAlib, each genome 'knows' its preferred method of mating (the default crossover
method) but it is incapable of performing crossover itself. Each genetic algorithm 'knows' how to get the
default crossover method from its genomes then use that method to peform the mating. With this model
it is possible to derive new genetic algorithm classes that use mating methods other than the defaults
defined for a genome.

Each of these methods can be customized so that it is specific not only to the data type, but also to the
problem type. This is one way you can put some problem-specific 'intelligence' into the genetic
algorithm (I won't go into a discussion about whether or not this is a good thing to do...)

In addition to the three primary operators, each genome must also contain an objective function and
may also contain a comparator. The objective function is used to evaluate the genome. The comparator
(often referred to as a 'distance function') is used to determine how different one genome is from
another. Every genetic algorithm requires that an objective function is defined - this is how the genetic
algorithm determines which individuals are better than others. Some genetic algorithms require a
comparator.

The library has some basic data types built in, but if you already have an array or list object, for
example, then you can quickly build a genome from it by multiply inheriting from your object and the
genome object. You can then use this new object directly in the GAlib genetic algorithm objects.

In general, a genetic algorithm does not need to know about the contents of the data structures on which
it is operating. The library reflects this generality. You can mix and match genome types with genetic
algorithms. The

genetic algorithm knows how to clone genomes in order to create populations, initialize genomes to start
a run, cross genomes to generate children, and mutate genomes. All of these operations are performed
via the genome member functions.

The Population Object

The population object is a container for genomes. Each population object has its own initializer (the
default simply calls the initializer for each individual in the population) and evaluator (the default
simply calls the evaluator for each individual in the population). It also keeps track of the best, average,
deviation, etc for the population. Diversity can be recorded as well, but since diversity calculations often
require a great deal of additional compuation, the default is to not record diversity.

The selection method is also defined in the population object. This method is used by the genetic
algorithms to choose which individuals should mate.

Each population object has a scaling scheme object associated with it. The scaling scheme object converts
the objective score of each genome to a fitness score that the genetic algorithm uses for selection. It also
caches fitness information for use later on by the selection schemes.

Objective Functions and Fitness Scaling

Genetic algorithms are often more attractive than gradient search methods because they do not require
compilicated differential equations or a smooth search space. The genetic algorithm needs only a single
measure of how good a single individual is compared to the other individuals. The objective function
provides this measure; given a single solution to a problem, how good is it?

GAlib Version 2.4, Document Revision B 8 19-Aug-96



Overview: So what does it look like in C++?

It is important to note the distinction between fitness and objective scores. The objective score is the
value returned by your objective function; it is the raw performance evaluation of a genome. The fitness
score, on the other hand, is a possibly-transformed rating used by the genetic algorithm to determine
the fitness of individuals for mating. The fitness score is typically obtained by a linear scaling of the raw
objective scores (but you can define any mapping you want, or no transformation at all). For example, if
you use linear scaling then the fitness scores are derived from the objective scores using the fitness
proportional scaling technique described in Goldberg's book. The genetic algorithm uses the fitness
scores, not the objective scores, to do selection.

You can evaluate the individuals in a population using an individual-based evaluation function (which
you define), or a population-based evaluator (also which you define). If you use an individual-based
objective, then the function is assigned to each genome. A population-based objective function can make
use of individual objective functions, or it can set the individual scores itself.

So what does it look like in C++?

A typical optimization program has the following form. This example creates a one-dimensional binary
string genome with the default operators then uses a simple genetic algorithm to do the evolution.

float Objective(GAGenone&);

mai n() {
GA1DBi narySt ri ngGenome genone(l ength, Objective); /'l create a genone
GASI npl eGA ga(genone) ; /'l create the genetic algorithm
ga. evolve(); /1 do the evolution
cout << ga.statistics() << endl; /1l print out the results
}

fl oat Objective(GAGenonme&) {
/'l your objective function goes here

}

You can very easily change the behaviour of the genetic algorithm by setting various parameters. Some
of the more common ones are set like this:

ga. popul ati onSi ze( popsi ze) ;

ga. nGener ati ons(ngen);

ga. pMut ati on(pnut);

ga. pCrossover (pcross);

GASi gmaTruncati onScal i ng si gmaTruncati on;
ga. scal i ng(si gmaTruncati on);

Alternatively you can have GAlib read the genetic algorithm options from a file or from the command
line. This snippet creates a genetic algorithm, reads the parameters from a file, reads parameters (if any)
from the command line, performs the evolution, then prints out the statistics from the run.

GASt eady St at eGA ga(genone) ;

ga. paranmeters("settings.txt");
ga. paraneters(argc, argv);

ga. evol ve();

cout << ga.statistics() << endl;

A typical (albeit simple) objective function looks like this (this one gives a higher score to a binary
string genome that contains all 1s):

f1 oat
Obj ecti ve(GAGenone & g) {
GAL1DBi naryStri ngGenome & genone = (GA1DBi naryStringGenonme &) g;
float score=0.0;
for(int i=0; i<genone.length(); i++)
score += genone. gene(i);
return score;

GAlib Version 2.4, Document Revision B 9 19-Aug-96



Overview: What can the operators do?

}

You can define the objective function as a static member of a derived class, or just define a function and
use it with the existing GAlib genome classes.

When you write an objective function, you must first cast the generic genome into the type of genome
that your objective function is expecting. From that point on you can work with the specific genome
type. Each objective function returns a single value that represents the objective score of the genome
that was passed to the objective function.

Please see the examples for more samples of the library in action. And see the programming interface
page for a complete list of member functions and built-in operators.

What can the operators do?

Here are some examples of the types of mutation and crossover that can be done using GAlib.
Traditional crossover generates two children from two parents, and mutation is typically applied to a
single individual. However, many other types of crossover and mutation are possible, such as crossover
using three or more parents, asexual crossover or population-based mutation. The following examples
illustrate some of the standard, sexual crossover and individual mutation methods in GAlib.

(N % N @

tree node swap mutation §
P C' @ oT1T]
{L E\O array one point crossover

O/ \\\O i C'éﬁ:‘ i 5

! I I O

ik o/ o

r'-‘:"'u .

s L e tree one point crossover
tree sub-tree swap mutation

array two point crossover

S —e—D
i

ar C? list node swap mutation
e
list one point crossover list order crossover

Ot J\—'/ ¥

list destructive mutation

list generative mutation list sequence swap mutation

GAlib Version 2.4, Document Revision B 10 19-Aug-96



Overview: How do | define my own operators?

How do | define my own operators?

Defining the operators is only as difficult as figuring out the algorithm you want to implement. As far
as the actual implementation goes, there's not much to it. To assign an operator to a genome, just use the
appropriate member function. For example, the following code snippet assigns '‘Mylnitializer' as the
initialization function and 'MyCrossover' as the crossover function for a binary string genome.

GA1DBI naryStri ngGenome genone(20);
genone.initializer(Mlnitializer);
genone. crossover (MyCrossover);

If you do this to the first genome (the one you use to create the genetic algorithm) then all of the ones
that the GA clones will have the same operators defined for them.

When you derive your own genome class you will typically hard-code the operators into the genome
like this:

class MyGenome : public GAGenone ({
public:
static void Random nitializer(GAGenone&);
static int Juggl eCrossover(const GAGenone&, const GAGenone&, GAGenone*, GAGenomne*);
static int KillerMitate(GAGenoneg&, float);
static float El enentConparator(const GAGenone&, const GAGenoneg&);
static float Threshol dObjective(GAGenonmes&) ;

public:
MyGenone() {
initializer(Randonm nitializer);
crossover (Juggl eCrossover) ;
nmut ator (Ki I l er Mut ate);
conpar at or ( El ement Conpar ator);
eval uat or (Thr eshol dObj ecti ve);

}

/'l remai nder of class definition here

b

Notice how easy it becomes to change operators. You can very easily define a multitude of operators for
a single representation and experiment with them to see which performs better.

Why are the genome operators GAlib not member functions? The primary reason is so that you do not
have to derive a new class in order to change the behaviour of one of the built-in genome types. In
addition, the use of function pointers rather than member functions lets us change operators at run-time
(unlike member functions or templatized classes). And they are faster than virtual functions (OK, so this
the virtual/non-virtual component is a pretty small fraction of actual execution time compared to most
objective functions...). On the down side, they permit you to make some ugly mistakes by improperly
casting.

The definition for the List1PtCrossover looks like this:

This crossover picks a single point in the parents then generates one or two children from the
two halves of each parent.

tenpl ate <class T> int

OnePoi nt Cr ossover (const GAGenone& pl, const GAGenone& p2, GAGenonme* cl, GAGenone* c2){
GALi st Genonme<T> &nmonr( GALi st Genonme<T> &) pl;
GALi st Genome<T> &dad=( GALi st Genonme<T> &) p2;
int nc=0;
unsigned int a
unsigned int b

GARandonl nt (0, nmom size());
GARandom nt (0, dad.size()); GAList<T> * |ist;

GAlib Version 2.4, Document Revision B 11 19-Aug-96



Overview: How do | define my own operators?

/1 first do the sister...
if(cl){
GALi st Genonme<T> &si s=( GALi st Genonme<T> &) *c1;
Si s. GALI st <T>:: copy(nom ;
i st = dad. GALi st <T>::cl one(b);
if(a < nmomsize()){
T *site = sis.warp(a);
while(sis.tail() !'= site)

sis.destroy(); // delete the tail node
sis.destroy(); /1l trash the trailing node (list[a])
}
el se{
sis.tail(); /1 move to the end of the list
}
sis.insert(list); /'l stick the clone onto the end
delete list;
sis.warp(0); /1 set iterator to head of |ist
nc += 1;
}
/1 ...now do the brother
if(c2){

GALi st Genone<T> &br o=( GALi st Genonme<T> &) *c2;
bro. GALi st <T>:: copy(dad);
list = nom GALi st<T>::clone(a);
if(b < dad.size()){
T *site = bro.warp(b);

while(bro.tail () != site)
bro. destroy(); /1 delete the tail node
bro.destroy(); /1 trash the trailing node (list[a])
}
el se{
bro.tail(); // nmove to the end of the list
}
bro.insert(list); /1 stick the clone onto the end
delete |ist;
bro. warp(0); /Il set iterator to head of I|ist
nc += 1,
}
return nc;

}
The definition for FlipMutator for 1DArrayAlleleGenomes looks like this:

This mutator flips the value of a single element of the array to any of the possible allele values.

i nt
Fl i pMut at or (GAGenonme & c¢, float prmut) {
GAL1DArr ayAl | el eGenone<T> &chi | d=( GALDArr ayAl | el eGenone<T> &)c;
register int n, i;
if(pmut <= 0.0) return(0);
float nMut = prmut * (float)(child.length());
if(nMuit < 1.0){ // we have to do a flip test on each bit
nMit = O;
for(i=child.length()-1; i>=0; i--){
i f (GAFl i pCoi n(pnut)){
child.gene(i, child.alleleset().allele());
nMit ++;
}
}
}
el se{ /1 only flip the number of bits we need to flip
for(n=0; n<nMut; n++){
i = GARandom nt (0, child.length()-1);
child.gene(i, child.alleleset().allele());

GAlib Version 2.4, Document Revision B 12 19-Aug-96



Overview: What about deriving my own genome class?

}

}
return((int)nMt);

}

And the definition for a typical initializer looks like this:

This initializer creates a tree of bounded random size and forkiness.

voi d

Treelnitializer(GAGenone & c) {
GATr eeGenonme<Poi nt > &t r ee=( GATr eeGenonme<Poi nt > &) c;
tree.root();
tree.destroy(); /] destroy any pre-existing tree
Point p(0,0,0);
tree.insert(p, GATr eeBASE: : ROOT) ;

int n = GARandom nt (0, MAX_ CHILDREN); // limt nunber

for(int i=0; i<n; i++)
DoChil d(tree, 0);
}

voi d
DoChi | d( GATr eeGenonme<Poi nt > & tree, int depth) {

i f(depth >= MAX_DEPTH) return; /'l 1imt depth of the tree
int n = GARandom nt (0, MAX_CHI LDREN) ; /1 limt number
Poi nt p(GARandon¥l oat (0, 25), GARandonFl oat (0, 25), GARandonFl oat (0, 25));

tree.insert(p, GATr eeBASE: : BELOW ;
for(int i=0; i<n; i++)
DoChil d(tree, depth+1);

tree. parent(); /'l move the iterator up one |evel

What about deriving my own genome class?

Here is the definition of a genome that contains an arbitrary number of lists. It could easily be modified
to become a diploid genome. It is used in exactly the same way that the built-in genomes are used. For
a simpler example, see the GNU example which integrates the GNU BitString object with GAlib to form

a new genome class.

cl ass Robot Pat hGenome : public GAGenone {
public:
GADef i nel dentity("Robot Pat hGenone", 251);
static void Initializer(GAGenone&) ;
static int Mitator(GAGenoneg&, float);

static float Conparator(const GAGenone&, const GAGenone&);

static float Eval uator(GAGenoneg&);
static void Pathlnitializer(GAGenoneg&);

public:
Robot Pat hGenome(i nt nrobots, int pathlength);
Robot Pat hGenone(const Robot Pat hGenonme & orig);
Robot Pat hGenonme& oper at or =(const GAGenone & arg);
virtual ~Robot Pat hGenone();
virtual GAGenome *cl one( GAGenone:: Cl oneMet hod) const
virtual void copy(const GAGenome & c);
virtual int equal (const GAGenone& g) const ;
virtual int read(istream & is);
virtual int wite(ostream & os) const ;
GALi st Genone<int> & path(int i){ return *list[i]; }
int npaths() const { return n; }

int length() const { return|; }
pr ot ect ed:
GAlib Version 2.4, Document Revision B 13

of children

of children

19-Aug-96



Overview: What about deriving my own genome class?

int n, |;
GALi st Genone<i nt> **| i st;

b

GAlib Version 2.4, Document Revision B 14 19-Aug-96



Class Hierarchy: GAlib Class Hierarchy - Pictorial

Class Hierarchy

Here is an outline of the GAlib class hierarchy. The first section is a graphic map, the second section
contains an outline of the hierarchy.

GAlib Class Hierarchy - Pictorial

LdLGenetcty gonthm Lidseadionscheme L&scalingschem e
GASimplaGn, GPR arkisalectar GithbaScaling
G SteadyStatelG o GaFoul et elfhed Sedectar GiLinearsoaling
Gl am entalGe GATowrnamentSelactor GAP owner LawdEcaling
G Uriform Sel et or G5 haring
SR S5alectar
GAL st T GREinarystring GoyrayeT=
GAListGenom exT= GAID BiraryStringGenome G#ID ArrayGenomes T
| |
GABIn e Genom e GO0 ArrapfdledeGenom e T
GATrae T
—] G Binary StringGenome G Ay Geromes: Ts
G TreeGenomes:Ts [
GO Ayran e el anom e T=
G&D BiraryStringGenome G20 ArrayGenomes: T

GAlib Version 2.4, Document Revision B 15 19-Aug-96



Class Hierarchy: GAlib Class Hierarchy - Outline

GAlib Class Hierarchy - Outline

GAGeneticAlgorithm
GASteadyStateGA (overlapping populations)
GASimpleGA (non-overlapping populations)
GAlIncrementalGA (overlapping with custom replacement)
GADemeGA (parallel populations with migration)

GAStatistics
GAParameterList
GAPopulation

GAScalingScheme
GANoScaling
GALinearScaling
GASigmaTruncationScaling
GAPowerLawsScaling
GASharing

GASelectionScheme
GARankSelector
GARouletteWheelSelector
GATournamentSelector
GAUniformSelector
GASRSSelector
GADSSelector

GAGenome
GA1DBinaryStringGenome
GABiIn2DecGenome
GA2DBinaryStringGenome
GA3DBinaryStringGenome
GAl1DArrayGenome<>
GA1DArrayAlleleGenome<>
GAStringGenome (same as GA1DArrayAlleleGenome<char>)
GARealGenome (same as GA1DArrayAlleleGenome<float>)
GA2DArrayGenome<>
GA2DArrayAlleleGenome<>
GA3DArrayGenome<>
GA3DArrayAlleleGenome<>
GATreeGenome<>
GAListGenome<>

GAArray<> GAAlleleSetArray<> GAAlleleSet<>
GABinaryString GABiIn2DecPhenotype

GATree<> GATreelter<>

GAList<> GAListlter<>

GAlib Version 2.4, Document Revision B 16

19-Aug-96



Programming Interface: Global Typedefs and Enumerations

Programming Interface

This document describes the programming interface for the library. The section for each class contains a
description of the object's purpose followed by the creator signature and member functions. There are
also sections for library constants, typedefs, and function signatures.

Global Typedefs and Enumerations

typedef float GAProbability, GAProb

typedef enum _GABool ean {gaFal se, gaTrue} GABool ean, GABool
typedef enum _GASt atus {gaSuccess, gaFailure} GAStatus
typedef unsigned char GABit

Global Variables and Global Constants

char* gaErrMsg; // globally defined pointer to current error message
i nt gaDef Scor eFrequencyl = 1; /1l for non-overl appi ng popul ati ons

i nt gaDef Scor eFrequency2 = 100; // for overl apping popul ations

fl oat gaDef Li near Scal ingMultiplier = 1.2;

fl oat gaDef Si gmaTruncati onMul tiplier = 2.0;

fl oat gaDef Power Scal i ngFactor = 1.0005;

fl oat gaDef SharingCutoff = 1.0;

Function Prototypes

GABool ean (*GAGeneti cAl gorithm: Term nator) (GAGeneti cAl gorithmg)

GAGenone& (*GAl ncrenment al GA: : Repl acenent Functi on) (GAGenone&, GAPopul ati on&)

void (*GAPopul ation::lnitializer)(GAPopul ation &)

voi d (*GAPopul ation:: Eval uat or) ( GAPopul ati on &)

void (*GAGenone::Initializer)(GAGenonme &)

float (*GAGenone:: Eval uator) (GAGenone &)

int (*GAGenone:: Mitator)(GAGenone &, float)

float (*GAGenone:: Conparator)(const GAGenone &, const GAGenone&)

int (*GAGenone: : Sexual Crossover) (const GAGenonme&, const GAGenone&, GAGenone*, GAGenome*)
int (*GAGenone: : Asexual Crossover) (const GAGenonme&, GAGenone*)

int (*GABi naryEncoder) (fl oat& value, GABit* bits, unsigned int nbits, float mn, float
max)

int (*GABi naryDecoder) (fl oat& value, const GABit* bits, unsigned int nbits, float mn,
fl oat max)

GAlib Version 2.4, Document Revision B 17 19-Aug-96



Programming Interface: Parameter Names and Command-Line Options

Parameter Names and Command-Line Options

Parameters may be specified using the full name strings (for example in parameter files), short name
strings (for example on the command line), or explicit member functions (such as those of the genetic
algorithm objects). All of the #defined names are simply the full names declared as #defined strings;
you can use either the string (e.g. number_of generations) or the #defined name (e.g.
gaNnGenerations), but if you use the #defined name then the compiler will be able to catch your
spelling mistakes.

When you specify GAlib arguments on the command line, they must be in name-value pairs. You can
use either the long or short name. For example, if my program is called optimizer, the command line
for running the program with a population size of 150, mutation rate of 10%, and score filename of
evolve.txt would be:

optim zer popsize 150 pnut 0.1 sfile evolve.txt

#defi ne nane full name data type and

short nane defaul t val ue
gaNm ni maxi nm ni maxi int

nm gaDef M ni Maxi =1
gaNnGener at i ons nunber _of _generati ons int

ngen gaDef NumGen = 250
gaNpConver gence conver gence_per cent age f1 oat

pconv gaDef PConv = 0.99
gaNnConver gence generations_to_convergence int

nconv gaDef NConv = 20
gaNpCr ossover crossover_probability fl oat

pcross gaDef PCross = 0.9
gaNpMut ati on nmut ati on_probability fl oat

pnut gabDef PMut = 0.01
gaNpopul ati onSi ze popul ati on_si ze int

popsi ze gaDef PopSi ze = 30
gaNnPopul ati ons nunmber _of _popul ati ons int

npop gaDef NPop = 10
gaNpRepl acenent repl acenent _per cent age fl oat

prepl gaDef PRepl = 0.25
gaNnRepl acenent repl acenent _numnber int

nrepl gaDef NRepl = 5
gaNnBest Genones nunber _of _best int

nbest gaDef NumBest Genones = 1
gaNscor eFrequency score_frequency i nt

sfreq gaDef Scor eFrequencyl =1
gaNf | ushFr equency flush_frequency int

ffreq gaDef Fl ushFrequency = 0

GAlib Version 2.4, Document Revision B 18 19-Aug-96



Programming Interface: Parameter Names and Command-Line Options

#defi ne nane full name data type and
short nane def aul t val ue
gaNscor eFi | enane score_fil ename char*
sfile gaDef Scor eFi | enane =
"generations. dat"
gaNsel ect Scor es sel ect _scores int
sscores gaDef Sel ect Scores =
GASt ati stics:: Maxi mum
gaNelitism elitism GABool ean
el gaDefElitism = gaTrue
gaNnOf f spring nunber _of _of f spring int
nof f spr gaDef NumOf f = 2
gaNrecordDi versity record_diversity GABool ean
recdi v gaDef Di vFl ag = gaFal se
gaNpM gration nm gration_percentage fl oat
pni g gaDefPM g = 0.1
gaNnM gration m gration_nunber int
nm g gaDefNM g = 5

GAlib Version 2.4, Document Revision B 19 19-Aug-96



Programming Interface: Error Handling

Error Handling

Exceptions are not used in GAlib version 2.x. However, some GAlib functions return a status value to
indicate whether or not their operation was successful. If a function returns an error status, it posts its
error message on the global GAlib error pointer, a global string called gaErrMsg.

By default, GAlib error messages are sent immediately to the error stream. You can disable the
immediate printing of error messages by passing gaFalse to the ::GAReportErrors function. Passing a
value of gaTrue enables the behavior.

If you would like to redirect the error messages to a different stream, use the :GASetErrorStream
function to assign a new stream. The default stream is the system standard error stream, cerr.

Here are the error control functions and variables:

extern char gaErrMsg[];
voi d GAReport Errors(GABool ean flag);
voi d GASet Error Streanmostreamg);

GAlib Version 2.4, Document Revision B 20 19-Aug-96



Programming Interface: Random Number Functions

Random Number Functions

GAlib includes the following functions for generating random numbers:

voi d GARandomtSeed(unsi gned s = 0)

int GARandom nt ()
int GARandom nt (int |ow, int high)

doubl e GARandonDoubl e()
doubl e GARandonDoubl e(doubl e | ow, doubl e hi gh)

fl oat GARandon¥l oat ()
fl oat GARandon¥l oat (fl oat |ow, float high)

int GARandonBit ()
GABool ean GAFl i pCoi n(fl oat p)

int GAGaussi anlnt(int stddev)

fl oat GAGaussi anFl oat (fl oat stddev)
doubl e GAGaussi anDoubl e(doubl e stddev)
doubl e GAUnI t Gaussi an()

If you call it with no argument, the GARandomSeed function uses the current time multiplied by the
process ID (on systems that have PIDs) as the seed for a psuedo-random number generator. On systems
with no process IDs it uses only the time. You can specify your own random seed if you like by passing
a value to this function. Once a seed has been specified, subsequent calls to GARandomSeed with the
same value have no effect. Subsequent calls to GARandomSeed with a different value will re-initialize
the random number generator using the new value.

The functions that take low and high as argument return a random number from low to high, inclusive.
The functions that take no arguments return a value in the interval [0,1]. GAFlipCoin returns a boolean
value based on a biased coin toss. If you give it a value of 1 it will return a 1, if you give it a value of
0.75 it will return a 1 with a 75% chance.

The GARandomBit function is the most efficient way to do unbiased coin tosses. It uses the random bit
generator described in Numerical Recipes in C.

The Gaussian functions return a random number from a Gaussian distribution with deviation that you
specify. The GAUnitGaussian function returns a number from a unit Gaussian distribution with mean 0
and deviation of 1.

GAlib uses a single random number generator for the entire library. You may not change the random
number generator on the fly - it can be changed only when GAlib is compiled. See the config.h and
random.h header files for details. By default, GAlib uses the ran2 generator described in Numerical
Recipes in C.

GAlib Version 2.4, Document Revision B 21 19-Aug-96



Programming Interface: GAGeneticAlgorithm

GAGeneticAlgorithm

This is an abstract class that cannot be instantiated. Each genetic algorithm, when instantiated, will have
default operators defined for it. See the documentation for the specific genetic algorithm type for details.

The base genetic algorithm class keeps track of evolution statistics such as number of mutations, number
of crossovers, number of evaluations, best/mean/worst in each generation, and initial/current
population statistics. It also defines the terminator, a member function that specifies the stopping
criterion for the algorithm.

You can maximize or minimize by calling the appropriate member function. If you derive your own
genetic algorithm, remember that users of your algorithm may need either type of optimization.

Statistics can be written to file each generation or periodically by specifying a flush frequency.
Generational scores can be recorded each generation or less frequently by specifying a score frequency.

Parameters such as generations-to-completion, crossover probability and mutation probability can be set
by member functions, command-line, or from file.

The evolve member function first calls initialize then calls the step member function until the done
member function returns gaTrue. It calls the flushScores member as needed when the evolution is
complete. If you evolve the genetic algorithm without using the evolve member function, be sure to call
initialize before stepping through the evolution. You can use the step member function to evolve a
single generation. You should call flushScores when the evolution is finished so that any buffered scores
are flushed.

The names of the individual parameter member functions correspond to the #defined string names. You
may set the parameters on a genetic algorithm one at a time (for example, using the nGenerations
member function), using a parameter list (for example, using the parameters member function with a
GAParameterList), by parsing the command line (for example, using the parameters member function
with argc and argv), by name-value pairs (for example, using the set member function with a
parameter name and value), or by reading a stream or file (for example, using the parameters member
with a filename or stream).

see also: GAParameterList
see also: GAStatistics
see also: Terminators

class hierarchy
cl ass GAGeneticAlgorithm: public GAl D

typedefs and constants

GABool ean (*GACeneti cAl gorithm: Term nator) (GACGeneti cAl gorithms)
enum{ MNIMZE = -1, MAXIMZE = 1 };

member function index

static GAParaneterList& registerDefaultParaneters(GAParanet erLi st &)

void * userData()

void * userData(void *)

void initialize(unsigned int seed=0)

void evol ve(unsigned int seed=0) void step()

GABool ean done()

GAGeneti cAl gorithm: Term nator termnator()

GAGeneti cAl gorithm: Term nator term nator(GAGeneti cAl gorithm: Term nator)
const GAStatistics & statistics() const

fl oat convergence() const

GAlib Version 2.4, Document Revision B 22 19-Aug-96



Programming Interface: GAGeneticAlgorithm

int generation() const
void flushScores()
int mnimxi () const
nt m ni maxi (int)
nt mnimze()
nt maxinm ze()
nt nGenerations() const
nt nGenerations(unsigned int)
nt nConvergence() const
int nConvergence(unsigned int)
fl oat pConvergence() const
fl oat pConvergence(fl oat)
float pMiutation() const
float pMutation(float) float pCrossover() const
float pCrossover (float)
GAGenone: : Sexual Crossover crossover (GAGenone: : Sexual Crossover func)
GAGenone: : Sexual Crossover sexual () const
GAGenone: : Asexual Crossover crossover ( GAGenone: : Asexual Crossover func)
GAGenone: : Asexual Crossover asexual () const
const GAPopul ati on & popul ati on() const
const GAPopul ation & popul ati on(const GAPopul ati on&)
int popul ationSize() const
int popul ationSi ze(unsi gned int n)
int nBest Genones() const
int nBest Genonmes(unsigned int n)
GAScal i ngScheme & scal i ng() const
GAScal i ngSchene & scal i ng(const GAScal i ngSchene&)
GASel ecti onScheme & sel ector() const
GASel ecti onSchene & sel ector(const GASel ecti onSchene& s)
voi d objectiveFunction(GAGenone: : Eval uat or)
voi d obj ectiveData(const GAEval Dat a&)
int scoreFrequency() const
int scoreFrequency(unsigned int frequency)
int flushFrequency() const
int flushFrequency(unsigned int frequency)
char* scoreFil ename() const
char* scoreFil ename(const char *fil enane)
int sel ectScores() const
int selectScores(GAStatistics:: Scorel D which)
GABool ean recordDi versity() const
GABool ean recordDi versity(GABool ean fl ag)
const GAParaneterlList & paraneters()
const GAParaneterlist & paraneters(const GAParaneterList &)
const GAParaneterList & paraneters(int& argc, char** argv, GABool ean flag = gaFal se)
const GAParaneterlList & paraneters(const char* filename, GABool ean flag = gaFal se)
const GAParaneterlList & paraneters(istream& GABool ean flag = gaFal se);
int set(const char* s, int v)
nt set (const char* s, unsigned int v)
nt set(const char* s, char v)
nt set (const char* s, const char* v)
S,
S,
*

nt set (const char* const voi d* v)
nt set(const char* doubl e v);

nt wite(const char* fil enane)

nt wite(ostreamg)

nt read(const char* fil enane)

nt read(ostream)

member function descriptions

convergence

Returns the current convergence. The convergence is defined as the ratio of the Nth previous best-of-
generation score to the current best-of-generation score.

GAlib Version 2.4, Document Revision B 23 19-Aug-96



Programming Interface: GAGeneticAlgorithm

crossover

Specify the mating method to use for evolution. This can be changed during the course of an evolution.
This genetic algorithm uses only sexual crossover.

done

Returns gaTrue if the termination criteria have been met, returns gaFalse otherwise. This function
simply calls the completion function that was specified using the terminator member function.

evol ve

Initialize the genetic algorithm then evolve it until the termination criteria have been satisfied. This
function first calls initialize then calls the step member function until the done member function returns
gaTrue. It calls the flushScores member as needed when the evolution is complete. You may pass a seed
to evolve if you want to specify your own random seed.

flushFrequency

Use this member function to specify how often the scores should be flushed to disk. A value of 0 means
do not write to disk. A value of 100 means to flush the scores every 100 generations.

flushScores

Force the genetic algorithm to flush its generational data to disk. If you have specified a flushFrequency
of 0 or specified a scoreFilename of nil then calling this function has no effect.

generation
Returns the current generation.
initialize

Initialize the genetic algorithm. If you specify a seed, this function calls GARandomSeed with that
value. If you do not specify a seed, GAlib will choose one for you as described in the random functions
section. It then initializes the population and does the first population evaluation.

nBest Genones

Specify how many 'best' genomes to record. For example, if you specify 10, the genetic algorithm will
keep the 10 best genomes that it ever encounters. Beware that if you specify a large number here the
algorithm will slow down because it must compare the best of each generation with its current list of
best individuals. The default is 1.

nConvergence

Set/Get the number of generations used for the convergence test.
nGener ati ons

Set/Get the number of generations.

obj ectiveData

Set the objective data member on all individuals used by the genetic algorithm. This can be changed
during the course of an evolution.

obj ecti veFunction

Set the objective function on all individuals used by the genetic algorithm. This can be changed during
the course of an evolution.

GAlib Version 2.4, Document Revision B 24 19-Aug-96



Programming Interface: GAGeneticAlgorithm

parameters

Returns a reference to a parameter list containing the current values of the genetic algorithm
parameters.

par amet er s( GAPar amet er Li st &)

Set the parameters for the genetic algorithm. To use this member function you must create a parameter
list (an array of name-value pairs) then pass it to the genetic algorithm.

paranmeters(int& argc, char** argv, GABoolean flag = gaFal se)

Set the parameters for the genetic algorithm. Use this member function to let the genetic algorithm
parse your command line for arguments that GAlib understands. This method decrements argc and
moves the pointers in argv appropriately to remove from the list the arguments that it understands. If
you pass gaTrue as the third argument then the method will complain about any command-line
arguments that are not recognized by this genetic algorithm.

paranmeters(char* fil ename, GABool ean flag = gaFal se)
parameters(istream& GABool ean flag = gaFal se)

Set the parameters for the genetic algorithm. This version of the parameters member function will parse
the specified file or stream for parameters that the genetic algorithm understands. If you pass gaTrue as
the second argument then the method will complain about any parameters that are not recognized by
this genetic algorithm.

pConvergence

Set/Get the convergence percentage. The convergence is defined as the ratio of the Nth previous best-
of-generation score to the current best-of-generation score. N is defined by the nConvergence member
function.

pCrossover

Set/Get the crossover probability.

pMut ati on

Set/Get the mutation probability.

popul ati on

Set/Get the population. Returns a reference to the current population.

popul ati onSi ze

Set/Get the population size. This can be changed during the course of an evolution.
recordDi versity

Convenience function for specifying whether or not to calculate diversity. Since diversity calculations
require comparison of each individual with every other, recording this statistic can be expensive. The
default is gaFalse (diversity is not recorded).

regi st erDefaul t Parameters

Each genetic algorithm defines this member function to declare the parameters that work with it. Pass a
parameter list to this function and this function will configure the list with the default parameter list and
values for the genetic algorithm class from which you called it. This is a statically defined function, so
invoke it using the class name of the genetic algorithm whose parameters you want to use, for example,
GASimpleGA::registerDefaultParameters(list). The default parameters for the base genetic algorithm
class are:

GAlib Version 2.4, Document Revision B 25 19-Aug-96



Programming Interface: GAGeneticAlgorithm

fl ushFrequency pConver gence scor eFi | ename
m ni maxi pCr ossover scor eFrequency
nBest Genones pMut ati on sel ect Scores
nCenerations popul ati onSi ze
nConver gence recordDi versity

scal ing

Set/Get the scaling scheme. The specified scaling scheme must be derived from the GAScalingScheme
class. This can be changed during the course of an evolution.

scor eFi | ename
Specify the name of the file to which the scores should be recorded.
scor eFrequency

Specify how often the generational scores should be recorded. The default depends on the type of
genetic algorithm that you are using. You can record mean, max, min, stddev, and diversity for every
n generations.

sel ect or

Set/Get the selection scheme for the genetic algorithm. The selector is used to pick individuals from a
population before mating and mutation occur. This can be changed during the course of an evolution.

sel ect Scores

This function is used to specify which scores should be saved to disk. The argument is the logical OR of
the following values: Mean, Maximum, Minimum, Deviation, Diversity (all defined in the scope of the
GAStatistics object). To record all of the scores, pass GAStatistics::AllScores. When written to file, the
format is as follows:

generation TAB nean TAB max TAB min TAB deviation TAB diversity NEW.I NE

set
Set individual parameters for the genetic algorithm. The

first argument should be the full- or short-name of the parameter you wish to set. The second argument
is the value to which you would like to set the parameter.

statistics

Returns a reference to the statistics object in the genetic algorithm. The statistics object maintains
information such as best, worst, mean, and standard deviation, and diversity of each generation as well
as a separate population with the best individuals ever encountered by the genetic algorithm.

step
Evolve the genetic algorithm for one generation.
term nat or

Set/Get the termination function. The genetic algorithm is complete when the completion function
returns gaTrue. The function must have the proper signature.

user Dat a

Set/Get the userData member of the genetic algorithm. This member is a generic pointer to any
information that needs to be stored with the genetic algorithm.

GAlib Version 2.4, Document Revision B 26 19-Aug-96



Programming Interface: GADemeGA

GADemeGA
(parallel populations with migration)

This genetic algorithm has multiple, independent populations. It creates the populations by cloning the
genome or population that you pass when you create it.

Each population evolves using a steady-state genetic algorithm, but each generation some individuals
migrate from one population to another. The migration algorithm is deterministic stepping-stone; each
population migrates a fixed number of its best individuals to its neighbor. The master population is
updated each generation with best individual from each population.

If you want to experiment with other migration methods, derive a new class from this one and define a
new migration operator. You can change the evolution behavior by defining a new step method in a
derived class.

see also: GAGeneticAlgorithm

class hierarchy
cl ass GADeneGA : public GAGeneti cAl gorithm

typedefs and constants
enum { ALL= -1 };

constructors

GADeneGA(const GAGenone&)
GADeneGA( const GAPopul ati on&)
GADeneGA( const GADeneGA&)

member function index

static GAParaneterList& registerDefaul t Paranet er s( GAPar anet er Li st &) ;
void mgrate()

GADenmeGA & oper at or ++()

const GAPopul ati on& popul ati on(unsigned int i) const

const GAPopul ation& popul ation(int i, const GAPopul ati on&)
int popul ationSi ze(unsigned int i) const

int popul ationSize(int i, unsigned int n)

int nRepl acenent (unsigned int i) const

int nReplacenent(int i, unsigned int n)

int nMgration() const

int nMgration(unsigned int i)

int nPopul ati ons() const

int nPopul ati ons(unsigned int i)

const GAStatistics& statistics() const

const GAStatistics& statistics(unsigned int i) const

member function descriptions

nM gration

Specify the number of individuals to migrate each generation. Each population will migrate this many
of its best individuals to the next population (the stepping-stone migration model). The individuals
replace the worst individuals in the receiving population.

nRepl acenment

Specify a number of individuals to replace each generation. When you specify a number of individuals
to replace, the pReplacement value is set to 0. The first argument specifies which population should be
modified. Use GADemeGA::ALL to apply to all populations.

GAlib Version 2.4, Document Revision B 27 19-Aug-96



Programming Interface: GADemeGA

oper at or ++

The increment operator evolves the genetic algorithm's population by one generation by calling the
step member function.

pRepl acenment

Specify a percentage of the population to replace each generation. When you specify a replacement
percentage, the nReplacement value is set to 0. The first argument specifies which population should be
modified. Use GADemeGA::ALL to apply to all populations.

regi sterDefaul t Parameters

This function adds parameters to the specified list that are of interest to this genetic algorithm. The
default parameters for the deme genetic algorithm are the parameters for the base genetic algorithm
class plus the following:

nM gration
nPopul ati ons

GAlib Version 2.4, Document Revision B 28 19-Aug-96



Programming Interface: GAlncrementalGA

GAlncrementalGA
(overlapping populations with 1 or 2 children per generation)

This genetic algorithm is similar to those based on the GENITOR model. It uses overlapping
populations, but very little overlap (only one or two individuals get replaced each generation). The
default replacement scheme is WORST. A replacement function is required only if you use CUSTOM or
CROWDING as the replacement scheme. You can do DelJong-style crowding by specifying a distance
function with the CROWDING option. (for best Delong-style results, derive your own genetic
algorithm)

You can specify the number of children that are generated in each 'generation' by using the nOffspring
member function. Since this genetic algorithm is based on a two-parent crossover model, the number of
offspring must be either 1 or 2. The default is 2.

Use the replacement method to specify which type of replacement the genetic algorithm should use.
The replacement strategy determines how the new children will be inserted into the population. If you
want the new child to replace one of its parents, use the Parent strategy. If you want the child to replace
a random population member, use the Random strategy. If you want the child to replace the worst
population member, use the Worst strategy.

If you specify CUSTOM or CROWDING you must also specify a replacement function with the proper
signature. This function is used to pick which genome will be replaced. The first argument passed to the
replacement function is the individual that is supposed to go into the population. The second argument
is the population into which the individual is supposed to go. The replacement function should return a
reference to the genome that the individual should replace. If no replacement should take place, the
replacement function should return a reference to the individual.

The score frequency for this genetic algorithm defaults to 100 (it records the best-of-generation every
100th generation). The default scaling is Linear, the default selection is RouletteWheel.

see also: GAGeneticAlgorithm

class hierarchy
class GAlncrenental GA : public GAGeneti cAl gorithm

typedefs and constants

GAGenone& (*GAl ncrenment al GA: : Repl acenment Functi on) (GAGenonme &, GAPopul ation &)
enum Repl acenment Schene {

RANDOM = GAPopul ati on: : RANDOM

BEST = GAPopul ati on: : BEST,

WORST = GAPopul ati on: : WORST,

CUSTOM = - 30,

CROWDI NG = - 30,

PARENT = -10
b

constructors

GAl ncrement al GA(const GAGenone&)
GAl ncrement al GA(const GAPopul ati on&)
GAl ncr enent al GA(const GAl ncr enent al GA&)

member function index

static GAParaneterList& registerDefaul t Paranet er s( GAPar anet er Li st &)

GASt eady St at eGA & oper at or ++()

Repl acenent Scheme repl acenment ()

Repl acenent Schenme repl acenment ( Repl acenment Scheme, Repl acenent Function f = NULL)
int nOffspring() const

GAlib Version 2.4, Document Revision B 29 19-Aug-96



Programming Interface: GAlncrementalGA

int nOffspring(unsigned int n)
member function descriptions

nOf f spring

The incremental genetic algorithm can produce either one or two individuals each generation. Use this
member function to specify how many individuals you would like.

oper at or ++

The increment operator evolves the genetic algorithm's population by one generation by calling the
step member function.

regi sterDefaul t Parameters

This function adds to the specified list parameters that are of interest to this genetic algorithm. The
default parameters for the incremental genetic algorithm are the parameters for the base genetic
algorithm class plus the following: nOf fspri ng

repl acement

Specify a replacement method. The scheme can be one of:

GAIl ncr enment al GA: : RANDOM GAIl ncr enent al GA: : BEST GAl ncr enment al GA: : CUSTOM
GAl ncr ement al GA: : PARENT GAl ncr ement al GA: : WORST GAl ncr enent al GA: : CRO\DI NG

If you specify custom or crowding replacement then you must also specify a function. The replacement
function takes two arguments: the individual to insert and the population into which it will be inserted.
The replacement function should return a reference to the genome that should be replaced. If no
replacement should take place, the replacement function should return a reference to the individual
passed to it.

GAlib Version 2.4, Document Revision B 30 19-Aug-96



Programming Interface: GASimpleGA

GASimpleGA
(non-overlapping populations)

This genetic algorithm is the 'simple’ genetic algorithm that Goldberg describes in his book. It uses non-
overlapping populations. When you create a simple genetic algorithm, you must specify either an
individual or a population of individuals. The new genetic algorithm will clone the individual(s) that
you specify to make its own population. You can change most of the genetic algorithm behaviors after
creation and during the course of the evolution.

The simple genetic algorithm creates an initial population by cloning the individual or population you
pass when you create it. Each generation the algorithm creates an entirely new population of
individuals by selecting from the previous population then mating to produce the new offspring for the
new population. This process continues until the stopping criteria are met (determined by the
terminator).

Elitism is optional. By default, elitism is on, meaning that the best individual from each generation is
carried over to the next generation. To turn off elitism, pass gaFalse to the elitist member function.

The score frequency for this genetic algorithm defaults to 1 (it records the best-of-generation every
generation). The default scaling is Linear, the default selection is RouletteWheel.

class hierarchy
cl ass GASi npl eGA : public GAGeneti cAl gorithm

constructors

GASi npl eGA(const GAGenone&)
GASi npl eGA(const GAPopul ati on&)
GASi npl eGA(const GASi npl eGAg&)

member function index

static GAParaneterlList& registerDefaultParanmeters(GAParanet erLi st &)
GASi npl eGA & oper at or ++()

GABool ean elitist() const

GABool ean elitist(GABool ean fl ag)

member function descriptions
elitist

Set/Get the elitism flag. If you specify gaTrue, the genetic algorithm will copy the best individual from
the previous population into the current population if no individual in the current population is any
better.

oper at or ++

The increment operator evolves the genetic algorithm's population by one generation by calling the
step member function.

regi st er Def aul t Parameters

This function adds to the specified list parameters that are of interest to this genetic algorithm. The
default parameters for the simple genetic algorithm are the parameters for the base genetic algorithm
class plus the following: elitism

GAlib Version 2.4, Document Revision B 31 19-Aug-96



Programming Interface: GASteadyStateGA

GASteadyStateGA
(overlapping populations)

This genetic algorithm is similar to the algorithms described by DelJong. It uses overlapping populations
with a user-specifiable amount of overlap. The algorithm creates a population of individuals by cloning
the genome or population that you pass when you create it. Each generation the algorithm creates a
temporary population of individuals, adds these to the previous population, then removes the worst
individuals in order to return the population to its original size.

You can select the amount of overlap between generations by specifying the pReplacement parameter.
This is the percentage of the population that should be replaced each generation. Newly generated
offspring are added to the population, then the worst individuals are destroyed (so the new offspring
may or may not make it into the population, depending on whether they are better than the worst in
the population).

If you specify a replacement percentage, then that percentage of the population will be replaced each
generation. Alternatively, you can specify a number of individuals (less than the number in the
population) to replace each generation. You cannot specify both - in a parameter list containing both
parameters, the latter is used.

The score frequency for this genetic algorithm defaults to 100 (it records the best-of-generation every
100th generation). The default scaling is Linear, the default selection is RouletteWheel.

see also: GAGeneticAlgorithm

class hierarchy
cl ass GASt eadyStateGA : public GAGeneticAl gorithm

constructors

GASt eady St at eGA(const GAGenone&)
GASt eady St at eGA(const GAPopul ati on&)
GASt eady St at eGA(const GASt eady St at eGA&)

member function index

static GAParaneterList& registerDefaultParaneters(GAParanet erLi st &)
GASt eady St at eGA & oper at or ++()

fl oat pReplacenent () const

fl oat pRepl acenment (fl oat percentage)

int nRepl acenent () const

int nRepl acenent (unsi gned int)

member function descriptions

nRepl acenment

Specify a number of individuals to replace each generation. When you specify a number of individuals
to replace, the pReplacement value is set to 0.

oper at or ++

The increment operator evolves the genetic algorithm's population by one generation by calling the
step member function.

pRepl acement

Specify a percentage of the population to replace each generation. When you specify a replacement
percentage, the nReplacement value is set to 0.

GAlib Version 2.4, Document Revision B 32 19-Aug-96



Programming Interface: GASteadyStateGA

regi sterDefaul t Parameters

This function adds to the specified list parameters that are of interest to this genetic algorithm. The
default parameters for the steady-state genetic algorithm are the parameters for the base genetic
algorithm class plus the following:

pRepl acement
nRepl acenent

GAlib Version 2.4, Document Revision B 33 19-Aug-96



Programming Interface: Terminators

Terminators

Completion functions are used to determine whether or not a genetic algorithm is finished. The done
member function simply calls the completion function to determine whether or not the genetic
algorithm should continue. The predefined completion functions use generation and convergence to
determine whether or not the genetic algorithm is finished.

The completion function returns gaTrue when the genetic algorithm should finish, and gaFalse when
the genetic algorithm should continue.

In this context, convergence refers to the the similarity of the objective scores, not similarity of
underlying genetic structure. The built-in convergence measures use the best-of-generation scores to
determine whether or not the genetic algorithm has plateaued.

GABool ean GAGeneti cAl gorithm: Term nat eUponGener ati on( GAGeneti cAl gorithm &)
GABool ean GAGeneti cAl gorithm : Term nat eUponConver gence( GAGeneti cAl gorithm &)
GABool ean GAGeneti cAl gorithm: Terni nat eUponPopConver gence( GAGeneti cAl gorithm &)

Term nat eUponGener ati on

This function compares the current generation to the specified number of generations. If the current
generation is less than the requested number of generations, it returns gaFalse. Otherwise, it returns
gaTrue.

Ter m nat eUponConver gence

This function compares the current convergence to the specified convergence value. If the current
convergence is less than the requested convergence, it returns gaFalse. Otherwise, it returns gaTrue.

Convergence is a number between 0 and 1. A convergence of 1 means that the nth previous best-of-
generation is equal to the current best-of-generation. When you use convergence as a stopping criterion
you must specify the convergence percentage and you may specify the number of previous generations
against which to compare. The genetic algorithm will always run at least this many generations.

Term nat eUponPopConver gence

This function compares the population average to the score of the best individual in the population. If
the population average is within pConvergence of the best individual's score, it returns gaTrue.
Otherwise, it returns gaFalse.

For details about how to write your own termination function, see the customizations section.

GAlib Version 2.4, Document Revision B 34 19-Aug-96



Programming Interface: Replacement Schemes

Replacement Schemes

The replacement scheme is used by the incremental genetic algorithm to determine how a new
individual should be inserted into a population. Valid replacement schemes include:

GAl ncr ement al GA: : RANDOM GAl ncr enent al GA: : CUSTOM
GAl ncrenment al GA: : BEST GAl ncr enent al GA: : CROADI NG
GAIl ncr enment al GA: : WORST GAIl ncr enment al GA: : PARENT

In general, replace worst produces the best results. Replace parent is useful for basic speciation, and
custom replacement can be used when you want to do your own type of speciation.

If you specify CUSTOM or CROWDING replacement then you must also specify a replacement function.
The replacement function takes as arguments an individual and the population into which the
individual should be placed. It returns a reference to the genome that the individual should replace. If
the individual should not be inserted into the population, the function should return a reference to the
individual.

Any replacement function must have the following function prototype:
typedef GAGenone& (*GAl ncrenent al GA: : Repl acenent Functi on) (GAGenone &, GAPopul ation &);

The first argument is the genome that will be inserted into the population, the second argument is the
population into which the genome should be inserted. The function should return a reference to the
genome that will be replaced. If no replacement occurs, the function should return a reference to the
original genome.

For details about how to write your own replacement function, see the customizations section.

GAlib Version 2.4, Document Revision B 35 19-Aug-96



Programming Interface: GAGenome

GAGenome

The genome is a virtual base class and cannot be instantiated. It defines a number of constants and
function prototypes specific to the genome and its derived classes.

The dimension is used to specify which dimension is being referred to in multi-dimensional genomes.
The clone method specifies whether to clone the entire genome (a new genome with contents identical to
the original will be created) or just the attributes of the genome (a new genome with identical
characteristics will be created). In both cases the caller is responsible for deleting the memory allocated
by the clone member function. The resize constants are used when specifying a resizable genome's
resize behavior.

The genetic operators for genomes are functions that take generic genomes as their arguments. This
makes it possible to define new behaviors for existing genome classes without deriving a new class.

class hierarchy
cl ass GAGenone : public GAID

typedefs and constants

enum GAGenone: : Di mensi on { LENGTH, W DTH, HElI GHT, DEPTH }

enum GAGenone: : Cl oneMet hod { CONTENTS, ATTRI BUTES }

enum { FIXED_SIZE = -1, ANY_SIZE = -10 }

float (*GAGenone:: Eval uator) (GAGenone &)

void (*GAGenone::Initializer)(GAGenome &)

int (*GAGenone:: Miutator) (GAGenone &, float)

float (*GAGenone:: Conparator)(const GAGenone &, const GAGenonme&)

i nt (*GAGenone: : Sexual Crossover) (const GAGenone&, const GAGenone&, GAGenone*, GAGenone*);
int (*GAGenone: : Asexual Crossover) (const GAGenone&, GAGenone*);

member function index

virtual void copy(const GAGenone & c)

virtual GAGenome * clone(CloneMethod flag = CONTENTS)

float score() const

float score(float s)

int neval s()

fl oat eval uat e( GABool ean flag = gaFal se) const

GACenone: : Eval uat or eval uator() const

GAGenone: : Eval uat or eval uat or (GAGenone: : Eval uat or func)
void initialize()

GACenonel nitializer initializer() const

GAGenonelnitializer initializer(GAGenone::Initializer func)
int nmutate(float pnutation)

GACenone: : Mut at or nutator() const

GAGenone: : Mut at or nut at or (GAGenome: : Mut at or func)

fl oat conpare(const GAGenonme& g) const

GACenone: : Conpar at or conparator() const

GAGenone: : Conpar at or conpar at or ( GAGenone: : Conpar at or c)
GAGenone: : Sexual Crossover crossover ( GAGenone: : Sexual Crossover f)
GACenone: : Sexual Crossover sexual ()

GAGenone: : Asexual Crossover crossover ( GAGenone: : Asexual Crossover f)
GAGenone: : Asexual Crossover asexual ()

GACeneti cAl gorithm * geneticAl gorithm() const

GAGenet i cAl gorithm * geneti cAl gorithm GAGeneti cAl gorithm &)
void * userData() const

void * userData(void * data)

GAEval Data * eval Data() const

GAEval Data * eval Data(void * data)

virtual int read(istream &)

virtual int wite(ostream & const

GAlib Version 2.4, Document Revision B 36 19-Aug-96



Programming Interface: GAGenome

virtual int equal (const GAGenonme &) const
virtual int notequal (const GAGenone &) const

These operators call the corresponding virtual members so that they will work on any properly
derived genome class.

int operator==(const GAGenonme&, const GAGenonme&)

int operator!=(const GAGenone&, const GAGenone&)

ostream & operator<<(ostream& const GAGenoneg&)
i stream & operator>>(istream& GAGenone&)

member function descriptions

cl one

This method allocates space for a new genome whereas the copy method uses the space of the genome
to which it belongs.

conpare

Compare two genomes. The comparison can be genotype- or phenotype-based. The comparison returns
a value greater than or equal to 0. 0 means the two genomes are identical (no diversity). The exact
meaning of the comparison is up to you.

conmpar at or

Set/Get the comparison method. The comparator must have the correct signature.

copy

The copy member function is called by the base class' operator= and clone members. You can use it to
copy the contents of a genome into an existing genome.

crossover

Each genome class can define its preferred mating method. Use this method to assign the preferred
crossover for a genome instance.

equal
not equal

‘equal’ and 'notequal’ are genome-specific. See the documentation for each genome class for specific
details about what 'equal’ means. For example, genomes that have identical contents but different allele
sets may or may not be considered equal. By default, notequal just calls the equal function, but you can
override this in derived classes if you need to optimize the comparison.

eval Dat a

Set/Get the object used to store genome-specific evaluation data. Each genome owns its own evaluation
data object; cloning a genome clones the evaluation data as well.

eval uate

Invoke the genome's evaluation function. If you call this member with gaTrue, the evaluation function
is called no matter what (assuming one has been assigned to the genome). By default, the argument to
this function is gaFalse, so the genome's evaluation function is called only if the state of the genome has
not changed since the last time the evaluator was invoked.

eval uat or

Set/Get the function used to evaluate the genome.

GAlib Version 2.4, Document Revision B 37 19-Aug-96



Programming Interface: GAGenome

geneti cAl gorithm

The member function returns a pointer to the genetic algorithm that 'owns' the genome. If this function
returns nil then the genome has no genetic algorithm owner.

initialize

Calls the initialization function for the genome.

initializer

Set/Get the initialization method. The initializer must have the correct signature.
mut at e

Calls the mutation method for the genome. The value is typically the mutation likliehood, but the exact
interpretation of this value is up to the designer of the mutation method.

mut at or

Set/Get the mutation method. The mutator must have the correct signature.

neval s

Returns the number of objective function evaluations since the genome was initialized.

oper at or == operator! =
oper at or << oper at or >>

These methods call the associated virtual member functions. They can be used on any generic genome.
If the derived class was properly defined, the appropriate derived functions will be called and the
functions will operate on the derived classes rather than the base class.

read
Fill the genome with the data read from the specified stream. sexual
asexual

Returns a pointer to the preferred mating method for this genome. If this function returns nil, no mating
method has been defined for the genome. The genetic algorithm object has ultimate control over the
mating method that is actually used in the evolution.

score

Returns the objective score of the genome using the objective function assigned to the genome. If no
objective function has been assigned and no score has been set, a score of 0 will be returned. If the score
function is called with an argument, the genome's objective score is set to that value (useful for
population-based objective functions in which the population object does the evaluations).

user Dat a

Each genome contains a generic pointer to user-specifiable data. Use this member function to set/get
that pointer. Notice that cloning a genome will cause the cloned genome to refer to the same user data
pointer as the original; the user data is not cloned as well. So all genomes in a population refer to the
same user data.

write

Send the contents of the genome to the specified stream.

GAlib Version 2.4, Document Revision B 38 19-Aug-96



Programming Interface: GA1DArrayGenome<T>

GA1DArrayGenome<T>

The 1D array genome is a generic, resizable array of objects. It is a template class derived from the
GAGenome class as well as the GAArray<> class.

Each element in the array is a gene. The values of the genes are determines by the type of the genome.
For example, an array of ints may have integer values whereas an array of doubles may have floating
point values.

see also: GAArray, GAGenome

class hierarchy
cl ass GA1DArrayGenome<T> : public GAArray<T>, public GAGenone

constructors
GALDArrayGenonme(unsi gned int |ength, GAGenone::Eval uator objective = NULL, void * userData
= NULL)

GALDAr r ayGenone(const GA1DArrayGenone<T> &)

member function index

const T & gene(unsigned int x=0) const

T & gene(unsigned int x=0)

T & gene(unsigned int x, const T& val ue) const

T & operator[](unsigned int x) const

T & operator[](unsigned int x)

int length() const

int length(int I)

int resize(int x)

int resizeBehavi our() const

int resizeBehaviour(unsigned int mnx, unsigned int maxx)

voi d copy(const GALlDArrayGenome<T>& original, unsigned int dest, unsigned int src
unsi gned int |ength)

void swap(unsigned int x1, unsigned int x2)
member function descriptions

copy

Copy the specified bits from the designated genome.
gene

Set/Get the specified element.

I ength

Set/Get the length.

resize

Set the length.

resi zeBehavi our

Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value
specifies the maximum allowable length. If min and max are equal, the genome is not resizable.

Use the resizeBehaviour and resize member functions to control the size of the genome. The default
behavior is fixed size. Using the resizeBehaviour method you can specify minimum and maximum
values for the size of the genome. If you specify minimum and maximum as the same values then fixed

GAlib Version 2.4, Document Revision B 39 19-Aug-96



Programming Interface: GA1DArrayGenome<T>

size is assumed. If you use the resize method to specify a size that is outside the bounds set earlier using
resizeBehaviour, the bounds will be 'stretched’' to accommodate the value you specify with resize.
Conversely, if the values you specify with resizeBehaviour conflict with the genome's current size, the
genome will be resized to accommodate the new values.

When resizeBehaviour is called with no arguments, it returns the maximum size if the genome is
resizable, or GAGenome::FIXED_SIZE if the size is fixed.

swap

Swap the specified elements.

genetic operators for this class

GA1DAr r ayGenone<>: : SwapMut at or

GALDAr r ayGenonme<>: : El ement Conpar at or
GA1DAr r ayGenome<>: : Uni f or mCr ossover
GA1DArr ayGenonme<>: : EvenOddCr ossover
GALDAr r ayGenonme<>: : OnePoi nt Cr ossover
GA1DAr r ayGenone<>: : TwoPoi nt Cr ossover
GA1DArrayGenonme<>: : Parti al Mat chCr ossover
GALDAr r ayGenome<>: : Or der Cr ossover
GA1DArr ayGenome<>: : Cycl eCrossover

default genetic operators for this class

initialization: GAGenone: : Nol nitializer
comparison: GALDAr r ay Genone<>: : El ement Conpar at or
mutation: GA1DAr r ayGenome<>: : SwapMit at or
Ccrossover: GA1DAr r ayGenome<>: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B

40

19-Aug-96



Programming Interface: GA1DArrayAlleleGenome<T>

GAl1DArrayAlleleGenome<T>

The one-dimensional array allele genome is derived from the one-dimensional array genome class. It
shares the same behaviors, but adds the features of allele sets. The value assumed by each element in
an array allele genome depends upon the allele set specified for that element. In the simplest case, you
can create a single allele set which defines the possible values for any element in the array. More
complicated examples can have a different allele set for each element in the array.

If you create the genome with a single allele set, the genome will have a length that you specify and
the allele set will be used for the mapping of each element. If you create the genome using an array of
allele sets, the genome will have a length equal to the number of allele sets in the array and each
element of the array will be mapped using the corresponding allele set.

When you define an allele set for an array genome, the genome makes its own copy. Subsequent clones
of this genome will refer to the original genome's allele set (allele sets do reference counting).

see also: GAArray, GA1DArrayGenome, GAAlleleSet, GAAlleleSetArray

class hierarchy
cl ass GA1DArrayAl |l el eGenome<T> : public GAArrayGenome<T>

constructors

GA1DArrayAl | el eGenone(unsi gned int |ength, const GAAll el eSet<T>& all el eset,
GAGenone: : Eval uat or objective = NULL, void * userData = NULL)

GA1DArrayAl | el eGenonme(const GAAl | el eSet Array<T>& al |l el esets, GAGenone:: Eval uat or objective
= NULL, void * userData = NULL)

GA1DArrayAl | el eGenonme(const GALDArrayAl | el eGenone<T>&)

member function index
const GAAl |l el eSet <T>& al |l el eset (unsigned int i = 0) const

member function descriptions

al | el eset

Returns a reference to the allele set for the specified gene. If the genome was created using a single
allele set, the allele set will be the same for every gene. If the genome was created using an allele set
array, each gene may have a different allele set.

genetic operators for this class

GALDArr ayAl | el eGenone<>:: Uniformnitializer
GA1DArrayAl | el eGenonme<>:: Orderedlnitializer
GALDArr ayAl | el eGenone<>:: Fl i pMut at or

default genetic operators for this class

initialization: GA1DArrayAl | el eGenone<>:: Uniformnitializer
comparison: GAL1DAr r ayGenonme<>: : El ement Conpar at or
mutation: GA1DArr ayAl | el eGenome<>:: Fl i pMut at or
crossover: GALDAr rayGenone<>: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 41 19-Aug-96



Programming Interface: GA2DArrayGenome<T>

GA2DArrayGenome<T>

The two-dimensional array genome is a generic, resizable array of objects. It is a template class derived
from the GAGenome class as well as the GAArray<> class.

Each element in the array is a gene. The values of the genes are determines by the type of the genome.
For example, an array of ints may have integer values whereas an array of doubles may have floating
point values.

see also: GAArray, GAGenome

class hierarchy
cl ass GA2DArrayGenome<T> : public GAArray<T>, public GAGenone

constructors
GA2DAr r ayGenonme(unsi gned int width, unsigned int height, GAGenone::Eval uator objective =
NULL, void * userData = NULL)
GA2DAr r ayGenonme( const GA2DAr rayGenone<T> &)

member function index

const T & gene(unsigned int x, unsigned int y) const

T & gene(unsigned int x, unsigned int y)

T & gene(unsigned int x, unsigned int y, const T& val ue)

int width() const

nt width(int w)

nt height() const

nt height(int h)

nt resize(int x, int y)

nt resizeBehavi our (GADi nmensi on whi ch) const

nt resizeBehavi our (GADi nensi on whi ch, unsigned int min, unsigned int max)

nt resizeBehavi our(unsigned int mnx, unsigned int maxx, unsigned int mny, unsigned int
maxy)

voi d copy(const GA2DArrayGenonme<T>& ori gi nal, unsigned int xdest, unsigned int ydest,
unsigned int xsrc, unsigned int ysrc, unsigned int width, unsigned int height)

void swap(unsigned int x1, unsigned int yl, unsigned int x2, unsigned int y2)

member function descriptions

copy
Copy the specified bits from the designated genome.

gene

Set/Get the specified element.

hei ght

Set/Get the height.

resize

Change the size to the specified dimensions.
resi zeBehavi our

Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value
specifies the maximum allowable length. If min and max are equal, the genome is not resizable.

GAlib Version 2.4, Document Revision B 42 19-Aug-96



Programming Interface: GA2DArrayGenome<T>

Use the resizeBehaviour and resize member functions to control the size of the genome. The default
behavior is fixed size. Using the resizeBehaviour method you can specify minimum and maximum
values for the size of the genome. If you specify minimum and maximum as the same values then fixed
size is assumed. If you use the resize method to specify a size that is outside the bounds set earlier using
resizeBehaviour, the bounds will be 'stretched’' to accommodate the value you specify with resize.
Conversely, if the values you specify with resizeBehaviour conflict with the genome's current size, the
genome will be resized to accommodate the new values.

When resizeBehaviour is called with no arguments, it returns the maximum size if the genome is
resizable, or GAGenome::FIXED_SIZE if the size is fixed.

The resizeBehaviour function works similarly to that of the 1D array genome. In this case, however, you
must also specify for which dimension you are setting the resize behavior. When resizeBehaviour is
called with no arguments, it returns the maximum size if the genome is resizable, or gaNoResize if the
size is fixed.

swap
Swap the specified elements.
wi dt h

Set/Get the width.

genetic operators for this class

GA2DAr r ayGenome<>: : SwapMit at or
GA2DAr r ayGenone<>: : El ement Conpar at or
GA2DAr r ayGenome<>: : Uni f or mCr ossover
GA2DAr r ayGenonme<>: : EvenOddCr ossover
GA2DAr r ayGenone<>: : OnePoi nt Cr ossover

default genetic operators for this class

initialization: GAGenone: : Nol nitializer
comparison: GA2DAr r ayGenone<>: : El ement Conpar at or
mutation: GA2DAr r ayGenonme<>: : SwapMut at or
crossover: GA2DAr r ayGenonme<>: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 43 19-Aug-96



Programming Interface: GA2DArrayAlleleGenome<T>

GA2DArrayAlleleGenome<T>

The two-dimensional array allele genome is derived from the two-dimensional array genome class. It
shares the same behaviors, but adds the features of allele sets. The value assumed by each element in
an array allele genome depends upon the allele set specified for that element. In the simplest case, you
can create a single allele set which defines the possible values for any element in the array. More
complicated examples can have a different allele set for each element in the array.

The genome will have width and height that you specify and the allele set will be used for the
mapping of each element. When you define an allele set for an array genome, the genome makes its
own copy. Subsequent clones of this genome will refer to the original genome's allele set (allele sets do
reference counting).

If you create a genome using an allele set array, the array of alleles will be mapped to the two
dimensions in the order width-then-height.

see also: GAArray, GA2DArrayGenome, GAAlleleSet, GAAlleleSetArray

class hierarchy
cl ass GA1DArrayAl |l el eGenome<T> : public GAArrayGenome<T>

constructors

GA2DArr ayAl | el eGenonme(unsi gned int width, unsigned int height, GAAlIlel eSet<T>& alleles,
GAGenone: : Eval uat or objective = NULL, void * userData = NULL)

GA2DAr r ayAl | el eGenone(unsi gned int wi dth, unsigned int height, GAAlIleleSetArray<T>&
al | el esets, GAGenone:: Eval uator objective = NULL, void * userData = NULL)

GA2DArr ayAl | el eGenone(const GA2DAr r ayAl | el eGenonme<T> &)

member function index
const GAAl |l el eSet <T>& al |l el eset (unsigned int i = 0, unsigned int j = 0) const

member function descriptions

al | el eset

Returns a reference to the allele set for the specified gene. If the genome was created using a single
allele set, the allele set will be the same for every gene. If the genome was created using an allele set
array, each gene may have a different allele set.

genetic operators for this class
GA2DArr ayAl | el eGenone<>:: Uniformnitializer
GA2DAr r ayAl | el eGenome<>:: Fl i pMut at or

default genetic operators for this class

initialization: GA2DArr ayAl | el eGenone<>: : Uniform nitializer
comparison: GA2DAr r ayGenone<>: : El ement Conpar at or
mutation: GA2DAr r ayAl | el eGenone<>: : Fl i pMut at or
crossover: GA2DAr r ayGenonme<>: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 44 19-Aug-96



Programming Interface: GA3DArrayGenome<T>

GA3DArrayGenome<T>

The three-dimensional array genome is a generic, resizable array of objects. It is a template class
derived from the GAGenome class as well as the GAArray<> class.

Each element in the array is a gene. The values of the genes are determines by the type of the genome.
For example, an array of ints may have integer values whereas an array of doubles may have floating
point values.

see also: GAArray, GAGenome

class hierarchy
cl ass GA3DArrayGenome<T> : public GAArray<T>, public GAGenone

constructors
GA3DArrayGenonme(unsi gned int width, unsigned int height, unsigned int depth,
GAGenone: : Eval uator objective = NULL, void * userData = NULL)
GA3DArr ayGenone(const GA3DArrayGenone<T>&)

member function index

const T & gene(unsigned int X, unsigned int y, unsigned int z) const

T & gene(unsigned int x, unsigned int y, unsigned int z)

T & gene(unsigned int x, unsigned int y, unsigned int z, const T& val ue)

int width() const

nt width(int w)

nt height() const

nt height(int h)

nt depth() const

nt depth(int d)

nt resize(int x, int y, int z)

nt resizeBehavi our (GADi nensi on whi ch) const

nt resizeBehavi our (GADi nensi on which, unsigned int mn, unsigned int nmax)

nt resizeBehaviour(unsigned int mnx, unsigned int maxx, unsigned int mny, unsigned int
maxy, unsigned int mnz, unsigned int maxz)

voi d copy(const GA3DArrayGenone<T>& original, unsigned int xdest, unsigned int ydest,
unsi gned int zdest, unsigned int xsrc, unsigned int ysrc, unsigned int zsrc,
unsigned int w dth, unsigned int height, unsigned int depth)

void swap(unsigned int x1, unsigned int yl, unsigned int z1l, unsigned int x2, unsigned int
y2, unsigned int z2)

member function descriptions

copy

Copy the specified bits from the designated genome.
dept h

Set/Get the depth.

gene

Set/Get the specified element.

hei ght

Set/Get the height.

resize

Change the size to the specified dimensions.

GAlib Version 2.4, Document Revision B 45 19-Aug-96



Programming Interface: GA3DArrayGenome<T>

resi zeBehavi our

Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value
specifies the maximum allowable length. If min and max are equal, the genome is not resizable.

Use the resizeBehaviour and resize member functions to control the size of the genome. The default
behavior is fixed size. Using the resizeBehaviour method you can specify minimum and maximum
values for the size of the genome. If you specify minimum and maximum as the same values then fixed
size is assumed. If you use the resize method to specify a size that is outside the bounds set earlier using
resizeBehaviour, the bounds will be 'stretched’' to accommodate the value you specify with resize.
Conversely, if the values you specify with resizeBehaviour conflict with the genome's current size, the
genome will be resized to accommodate the new values.

When resizeBehaviour is called with no arguments, it returns the maximum size if the genome is
resizable, or GAGenome::FIXED_SIZE if the size is fixed.

The resizeBehaviour function works similarly to that of the 1D array genome. In this case, however, you
must also specify for which dimension you are setting the resize behavior. When resizeBehaviour is
called with no arguments, it returns the maximum size if the genome is resizable, or gaNoResize if the
size is fixed.

swap
Swap the specified elements.
wi dt h

Set/Get the width.

genetic operators for this class

GA3DAr r ayGenonme<>: : SwapMut at or
GA3DAr r ayGenone<>: : El enment Conpar at or
GA3DAr r ayGenome<>: : Uni f or mCr ossover
GA3DAr r ayGenome<>: : EvenOddCr ossover
GA3DAr r ayGenone<>: : OnePoi nt Cr ossover

default genetic operators

initialization: GAGenone: : Nol nitializer
comparison: GA3DAr r ayGenone<>: : El ement Conpar at or
mutation: GA3DAr r ayGenonme<>: : SwapMuit at or
crossover: GA3DAr r ayGenonme<>: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 46 19-Aug-96



Programming Interface: GA3DArrayAlleleGenome<T>

GA3DArrayAlleleGenome<T>

The three-dimensional array allele genome is derived from the three-dimensional array genome class. It
shares the same behaviors, but adds the features of allele sets. The value assumed by each element in
an array allele genome depends upon the allele set specified for that element. In the simplest case, you
can create a single allele set which defines the possible values for any element in the array. More
complicated examples can have a different allele set for each element in the array.

The genome will have width, height, and depth that you specify and the allele set will be used for the
mapping of each element. When you define an allele set for an array genome, the genome makes its
own copy. Subsequent clones of this genome will refer to the original genome's allele set (allele sets do
reference counting).

If you create a genome using an allele set array, the array of alleles will be mapped to the three
dimensions in the order width-then-height-then-depth.

see also: GAArray, GA3DArrayGenome, GAAlleleSet, GAAlleleSetArray

class hierarchy
cl ass GA1DArrayAl |l el eGenome<T> : public GAArrayGenome<T>

constructors

GA3DArrayAl | el eGenonme(unsi gned int wi dth, unsigned int height, unsigned int depth,
GAAl | el eSet <T>& al | el es, GAGenone:: Eval uator objective = NULL, void * userData
NULL)

GA3DArrayAl | el eGenonme(unsi gned int wi dth, unsigned int height, unsigned int depth,
GAAl | el eSet <T>& al | el es, GAGenone:: Eval uator objective = NULL, void * userData =
NULL)

GA3DArr ayAl | el eGenone(const GA3DArrayAl | el eGenone<T> &)

member function index

const GAAl | el eSet<T>& all el eset(unsigned int i = 0, unsigned int j = 0, unsigned int k =
0) const

member function descriptions

al | el eset

Returns a reference to the allele set for the specified gene. If the genome was created using a single
allele set, the allele set will be the same for every gene. If the genome was created using an allele set
array, each gene may have a different allele set.

genetic operators for this class
GA3DArrayAl | el eGenone<>:: Uniformnitializer
GA3DArr ayAl | el eGenome<>:: Fl i pMut at or

default genetic operators for this class

initialization: GA3DArrayAl | el eGenone<>:: Uniform nitializer
comparison: GA3DAr r ayGenone<>: : El ement Conpar at or
mutation: GA3DArr ayAl | el eGenone<>: : Fl i pMut at or
crossover: GA3DAr r ayGenone<>: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 47 19-Aug-96



Programming Interface: GA1DBinaryStringGenome

GA1DBinaryStringGenome

The binary string genome is derived from the GABinaryString and GAGenome classes. It is a string of
1s and 0s whose length may be fixed or variable. The genes in this genomes are bits. The alleles for
each bit are 0 and 1.

see also: GABinaryString
see also: GAGenome

class hierarchy
class GAL1DBi naryStringGenone : public GABinaryString, public GAGenone

constructors

GA1DBi naryStri ngGenome(unsi gned int x, GAGenone::Eval uator objective = NULL, void *
userData = NULL)

GA1DBi naryStri ngGenonme(const GALDBi naryStri ngGenone&)

member function index

short gene(unsigned int x = 0) const

short gene(unsigned int, short val ue)

int length() const

int length(int 1)

int resize(int x)

int resizeBehavi our() const

int resizeBehavi our(unsigned int mnx, unsigned int nmaxx)

voi d copy(const GALDBi naryStringGenone &, unsigned int xdest, unsigned int xsrc, unsigned
int |ength)

void set (unsigned int x, unsigned int |ength)

voi d unset (unsigned int x, unsigned int |ength)

member function descriptions

copy
Copy the specified bits from the designated genome.
gene

Set/Get the specified bit.

I ength

Set/Get the length of the bit string.

resize

Set the length of the bit string.

resi zeBehavi our

Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value
specifies the maximum allowable length. If min and max are equal, the genome is not resizable.

Use the resizeBehaviour and resize member functions to control the size of the genome. The default
behavior is fixed size. Using the resizeBehaviour method you can specify minimum and maximum
values for the size of the genome. If you specify minimum and maximum as the same values then fixed
size is assumed. If you use the resize method to specify a size that is outside the bounds set earlier using
resizeBehaviour, the bounds will be 'stretched’' to accommodate the value you specify with resize.

GAlib Version 2.4, Document Revision B 48 19-Aug-96



Programming Interface: GA1DBinaryStringGenome

Conversely, if the values you specify with resizeBehaviour conflict with the genome's current size, the
genome will be resized to accommodate the new values.

When resizeBehaviour is called with no arguments, it returns the maximum size if the genome is
resizable, or GAGenome::FIXED_SIZE if the size is fixed.

set
unset

Set/Unset the bits in the specified range. If you specify a range that is not represented by the genome,
the range that you specified will be clipped to fit the genome.

genetic operators for this class

GAL1DBi naryStringGenone: : Uniform nitializer
GA1DBI naryStringGenone: : Setlnitializer
GALDBi naryStringGenone: : Unsetlnitializer
GAL1DBi naryStri ngGenone: : Fl i pMut at or

GA1DBI narySt ri ngGenone: : Bi t Conpar at or
GALDBi narySt ri ngGenone: : Uni f or nCr ossover
GALDBi naryStri ngGenone: : EvenOddCr ossover
GA1DBI narySt ri ngGenone: : OnePoi nt Cr ossover
GAL1DBi narySt ri ngGenone: : TwoPoi nt Cr ossover

default genetic operators for this class

initialization: GA1DBi naryStringGenone: : Uniform nitializer
comparison: GALDBi narySt ri ngGenome: : Bi t Conpar at or
mutation: GAL1DBi naryStri ngGenone: : Fl i pMut at or
crossover: GA1DBi narySt ri ngGenone: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 49 19-Aug-96



Programming Interface: GA2DBinaryStringGenome

GA2DBinaryStringGenome

The binary string genome is derived from the GABinaryString and GAGenome classes. It is a matrix of
1s and 0s whose width and height may be fixed or variable. The genes in this genomes are bits. The
alleles for each bit are 0 and 1.

see also: GABinaryString
see also: GAGenome

class hierarchy
cl ass GA2DBi naryStri ngGenone : public GABinaryString, public GAGenone

constructors
GA2DBi naryStri ngGenome(unsi gned int x, unsigned int y, GAGenone:: Eval uator objective =
NULL, void * userData = NULL)
GA2DBi naryStri ngGenome(const GA2DBi naryStri ngGenone &)

member function index

short gene(unsigned int x, unsigned int y) const

short gene(unsigned int x, unsigned int y, const short val ue)

int width() const

nt width(int w)

nt height() const

nt height(int h)

nt resize(int x, int y)

nt resizeBehavi our (GADi nensi on whi ch) const

nt resizeBehavi our (GADi nensi on which, unsigned int mn, unsigned int max)

nt resizeBehavi our(unsigned int mnx, unsigned int maxx, unsigned int mny, unsigned int
maxy)

voi d copy(const GA2DBi naryStri ngGenone &, unsigned int xdest, unsigned int ydest, unsigned
int xsrc, unsigned int ysrc, unsigned int w dth, unsigned int height)

void set (unsigned int, unsigned int, unsigned int, unsigned int)
voi d unset (unsigned int, unsigned int, unsigned int, unsigned int)

member function descriptions

copy

Copy the specified bits from the designated genome. If you specify a range that is not represented by
the genome, the range that you specified will be clipped to fit the genome.

gene
Set/Get the specified bit.

hei ght

Set/Get the height of the bit string.

resize

Set the size of the genome to the specified dimensions.
resi zeBehavi our

Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value
specifies the maximum allowable length. If min and max are equal, the genome is not resizable.

Use the resizeBehaviour and resize member functions to control the size of the genome. The default
behavior is fixed size. Using the resizeBehaviour method you can specify minimum and maximum

GAlib Version 2.4, Document Revision B 50 19-Aug-96



Programming Interface: GA2DBinaryStringGenome

values for the size of the genome. If you specify minimum and maximum as the same values then fixed
size is assumed. If you use the resize method to specify a size that is outside the bounds set earlier using
resizeBehaviour, the bounds will be 'stretched’' to accommodate the value you specify with resize.
Conversely, if the values you specify with resizeBehaviour conflict with the genome's current size, the
genome will be resized to accommodate the new values.

When resizeBehaviour is called with no arguments, it returns the maximum size if the genome is
resizable, or GAGenome::FIXED_SIZE if the size is fixed.

set
unset

Set/Unset the bits in the specified range. If you specify a range that is not represented by the genome,
the range that you specified will be clipped to fit the genome.

wi dt h
Set/Get the width of the bit string.

genetic operators for this class

GA2DBi naryStringGenome: : Uni form nitializer
GA2DBi naryStri ngGenone: : Setlnitializer
GA2DBi naryStringGenone: : Unsetlnitializer
GA2DBi narySt ri ngGenone: : Fl i pMut at or

GA2DBi narySt ri ngGenone: : Bi t Conpar at or
GA2DBi narySt ri ngGenone: : Uni f or nCr ossover
GA2DBi narySt ri ngGenomne: : EvenOddCr ossover
GA2DBi naryStri ngGenone: : OnePoi nt Cr ossover

default genetic operators for this class

initialization: GA2DBi naryStringGenone: : Uniform nitializer
comparison: GA2DBi narySt ri ngGenome: : Bi t Conpar at or
mutation: GA2DBi naryStri ngGenone: : Fl i pMut at or
crossover: GA2DBi narySt ri ngGenone: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 51 19-Aug-96



Programming Interface: GA3DBinaryStringGenome

GA3DBinaryStringGenome

The binary string genome is derived from the GABinaryString and GAGenome classes. It is a three-
dimensional block of 1s and 0s whose width, height, and depth can be fixed or variable. The genesin
this genomes are bits. The alleles for each bit are 0 and 1.

see also: GABinaryString
see also: GAGenome

class hierarchy
cl ass GA3DBi naryStringGenone : public GABinaryString, public GAGenone

constructors
GA3DBI naryStri ngGenome(unsi gned int x, unsigned int y, unsigned int z, GAGenone:: Eval uator
obj ective = NULL, void * userData = NULL)
GA3DBI naryStri ngGenonme(const GA3DBi naryStri ngGenone&)

member function index

short gene(unsigned int x, unsigned int y, unsigned int z) const

short gene(unsigned int x, unsigned int y, unsigned int z, short val ue)

int width() const

nt width(int w)

nt height() const

nt height(int h)

nt depth() const

nt depth(int d)

nt resize(int x, int y, int z)

nt resizeBehavi our (GADi nmensi on whi ch) const

nt resizeBehavi our (GADi nensi on whi ch, unsigned int min, unsigned int max)

nt resizeBehavi our(unsigned int mnx, unsigned int maxx, unsigned int mny, unsigned int
maxy, unsigned int mnz, unsigned int maxz)

voi d copy(const GA3DBi naryStringGenonme &, unsigned int xdest, unsigned int ydest, unsigned
int zdest, unsigned int xsrc, unsigned int ysrc, unsigned int zsrc, unsigned int
wi dth, unsigned int height, unsigned int depth);

voi d set_(uglsi gned int, unsigned int, unsigned int, unsigned int, unsigned int, unsigned
int);

voi d unset gunsi gned int, unsigned int, unsigned int, unsigned int, unsigned int, unsigned
int);

member function descriptions

copy

Copy the specified bits from the designated genome. If you specify a range that is not represented by
the genome, the range that you specified will be clipped to fit the genome.

depth

Set/Get the depth of the bit string.
gene

Set/Get the specified bit.

hei ght

Set/Get the height of the bit string.
resize

Set the size of the genome to the specified dimensions.

GAlib Version 2.4, Document Revision B 52 19-Aug-96



Programming Interface: GA3DBinaryStringGenome

resi zeBehavi our

Set/Get the resize behavior. The min value specifies the minimum allowable length, the max value
specifies the maximum allowable length. If min and max are equal, the genome is not resizable.

Use the resizeBehaviour and resize member functions to control the size of the genome. The default
behavior is fixed size. Using the resizeBehaviour method you can specify minimum and maximum
values for the size of the genome. If you specify minimum and maximum as the same values then fixed
size is assumed. If you use the resize method to specify a size that is outside the bounds set earlier using
resizeBehaviour, the bounds will be 'stretched’' to accommodate the value you specify with resize.
Conversely, if the values you specify with resizeBehaviour conflict with the genome's current size, the
genome will be resized to accommodate the new values.

When resizeBehaviour is called with no arguments, it returns the maximum size if the genome is
resizable, or GAGenome::FIXED_SIZE if the size is fixed.

set
unset

Set/Unset the bits in the specified range. If you specify a range that is not represented by the genome,
the range that you specified will be clipped to fit the genome.

wi dt h
Set/Get the width of the bit string.

genetic operators for this class

GA3DBI naryStringGenomne: : Uniformnitializer
GA3DBI naryStringGenone: : Setlnitializer
GA3DBi naryStri ngGenone: : UnsetlInitializer
GA3DBIi naryStri ngGenone: : Fl i pMut at or

GA3DBI narySt ri ngGenone: : Bi t Conpar at or
GA3DBi narySt ri ngGenone: : Uni f or nCr ossover
GA3DBi narySt ri ngGenone: : EvenOddCr ossover
GA3DBI narySt ri ngGenone: : OnePoi nt Cr ossover

default genetic operators for this class

initialization: GA3DBI naryStringGenomne: : Uniform nitializer
comparison: GA3DBI naryStri ngGenone: : Bi t Conpar at or
mutation: GA3DBi narySt ri ngGenone: : Fl i pMut at or
crossover: GA3DBI narySt ri ngGenomne: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 53 19-Aug-96



Programming Interface: GABin2DecGenome

GABin2DecGenome

This genome is an implementation of the traditional method for converting binary strings to decimal
values. It contains a mechanism for customized encoding of the bit string; binary-to-decimal and one
form of Gray coding are built in to the library. The default is binary-to-decimal mapping (counting in
base 2). To use this genome, you must create a mapping of bits to decimal values by specifying how
many bits will be used to represent what bounded numbers. The binary-to-decimal genome is derived
from the 1DBinaryStringGenome class.

You must create a phenotype before you can instantiate this genome. The phenotype defines how bits
should map into decimal values and vice versa. A single binary-to-decimal phenotype contains the
number of bits used to represent the decimal value and the minimum and maximum decimal values to
which the set of bits will map.

see also: GA1DBinaryStringGenome
see also: GABin2DecPhenotype
see also: GACrossover

class hierarchy
cl ass GABi n2DecGenone : public GALDBi naryStri ngGenone

constructors

GABi n2DecGenone( const GABi n2DecPhenotype &, GAGenone: : Eval uator objective = NULL, void *
userData = NULL)

GABi n2DecGenone( const GABi n2DecGenone&)

member function index

const GABi n2DecPhenot ype& phenot ypes(const GABi n2DecPhenotype &)
const GABi n2DecPhenot ype& phenotypes() const

int nPhenotypes() const

fl oat phenotype(unsigned int n) const

float phenotype(unsigned int n, float val ue)

voi d encoder ( GABi nar yEncoder)

voi d decoder ( GABi nar yDecoder)

member function descriptions

encoder
decoder

Use these member functions to set the encoder/decoder for the genome. These functions determine
what method will be used for converting the binary bits to decimal numbers. The functions that you
specify here must have the proper signature.

nPhenot ype

Returns the number of phenotypes (i.e. the number of decimal values represented) in the genome.
phenot ypes

Set/Get the mapping from binary to decimal numbers.

phenot ype

Set/Get the specified phenotype.

GAlib Version 2.4, Document Revision B 54 19-Aug-96



Programming Interface: GABin2DecGenome

default genetic operators for this class

initialization: GA1DBi naryStringGenone: : Uniform nitializer
comparison: GALDBi narySt ri ngGenome: : Bi t Conpar at or
mutation: GAL1DBi naryStri ngGenone: : Fl i pMut at or
crossover: GA1DBi narySt ri ngGenone: : OnePoi nt Cr ossover
de/encoding: GABI nar yEncode/ GABi nar yDecode

additional information

Conversion functions are defined for transforming strings of bits to decimal values and vice versa. The
function prototypes for the encoding (decimal-to-binary) and decoding (binary-to-decimal) are defined as
follows:

typedef int (*GABi naryEncoder) (float& value, GABit* bits, unsigned int nbits, float mn,
float max);

typedef int (*GABi naryDecoder) (float& value, const GABit* bits, unsigned int nbits, float
mn, float max);

The library includes the following binary-to-decimal/decimal-to-binary converters:
GABi nar yEncode/ GABi nar yDecode

Convert using a binary coding scheme.

GAGr ayEncode/ GAGr ayDecode

Convert using a Gray coding scheme.

GAlib Version 2.4, Document Revision B 55 19-Aug-96



Programming Interface: GAListGenome<T>

GAListGenome<T>

The list genome is a template class. It is derived from the GAGenome class as well as the GAList<>
class. It can be used for order-based representations or variable length sequences as well as traditional
applications of lists.

You must define an initialization operator for this class. The default initializer is Nolnitializer - if you do
not assign an initialization operator then you'll get errors about no initializer defined when you try to
initialize the genome.

see also: GAList
see also; GAGenome

class hierarchy
cl ass GALi st Genone<T> : public GALi st<T>, public GAGenone

constructors

GALi st Genome( GAGenone: : Eval uat or objective = NULL, void * userData = NULL)
GALi st Genone(const GALi st Genome<T> &)

genetic operators for this class

GALi st Genome<>: : Destructi veMit at or
GALi st Genome<>: : SwapMit at or

GALi st Genone<>: : OnePoi nt Cr ossover
GALi st Genonme<>: : Parti al Mat chCr ossover
GALi st Genonme<>: : Or der Cr ossover

GALi st Genonme<>: : Cycl eCr ossover

default genetic operators for this class

initialization: GAGenone: : Nol nitializer
comparison: GAGenone: : NoConpar at or
mutation: GALi st Genone<>: : SwapMuit at or
crossover: GALi st Genone<>: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 56 19-Aug-96



Programming Interface: GARealGenome

GARealGenome

The real number genome was designed to be used for applications whose representation requires an
array of (possibly bounded) real number parameters. The elements of the array can assume bounded
values, discretized bounded values, or enumerated values, depending on the type of allele set that is
used to create the genome. You can mix the bounding within the genome by specifying an appropriate
array of allele sets. The allele set defines the possible values that each element in the genome may
assume.

The real number genome is a specialization of the array genome with alleles. The specialization is of
type float. You must create an allele set or array of allele sets before you can instantiate this genome. If
you create a real number genome using a single allele set, each element in the genome will use that
allele set to determine its value. If you create a real number genome using an allele set array, the
genome will have a length equal to the number of elements in the array and each element of the real
number will be governed by the allele set corresponding to its location in the genome.

To use the real genome in your code, you must include the real genome header file in each of your files
that uses the real genome. You must also include the real genome source file (it contains template
specialization code) in one (and only one) of your source files. Including the real genome source file will
force the compiler to use the real specializations. If you do not include the real genome source file you
will get the generic array routines instead (and some of the allele methods will not work as expected).

see also: GA1DArrayAlleleGenome, GAAlleleSet, GAAlleleSetArray

class hierarchy

typedef GAAl | el eSet <f | oat > GAReal Al | el eSet

typedef GAAI | el eSet Cor e<f| oat > GAReal Al | el eSet Cor e

typedef GAAIl el eSet Array<fl oat> GAReal Al | el eSet Arr ay

typedef GALDArrayAl | el eGenone<fl oat > GAReal Genone
constructors

GAReal Genone(unsi gned int | ength, const GAReal Al l el eSet & GAGenone:: Eval uator objective =
NULL, void * userData = NULL)

GAReal Genonme(const GAReal Al |l el eSet Array &, GAGenone: : Eval uator objective = NULL, void *
userData = NULL)

GAReal Genome(const GAReal Genoneg&)

genetic operators for this class

GAReal Genone: : Uniformnitializer
GAReal Genone: : Orderedlnitializer
GAReal Genone: : Fl i pMut at or

GAReal Genone: : SwapMit at or

GAReal Gaussi anMut at or

GAReal Genone: : Uni f or nCr ossover
GAReal Genone: : EvenOddCr ossover
GAReal Genone: : OnePoi nt Cr ossover
GAReal Genone: : TwoPoi nt Cr ossover
GAReal Genone: : Parti al Mat chCr ossover
GAReal Genone: : Or der Cr ossover
GAReal Genone: : Cycl eCr ossover

default genetic operators for this class

initialization: GAReal Genone: : Uniformnnitializer
comparison: GAReal Genone: : El enent Conpar at or
mutation: GAReal Gaussi anMut at or
crossover: GAReal Genone: : Uni f or nCr ossover

GAlib Version 2.4, Document Revision B 57 19-Aug-96



Programming Interface: GAStringGenome

GAStringGenome

The string genome can be used for order-based applications, variable length string applications, or non-
binary allele set alphabets. The allele set defines the possible values that each element in the string
may assume.

The string genome is a specialization of the array genome with alleles. The specialization is of type
char. You must create an allele set or array of allele sets before you can instantiate this genome.

If you create a string genome using a single allele set, each element in the genome will use that allele
set to determine its value. If you create a string genome using an allele set array, the string will have a
length equal to the number of elements in the array and each element of the string will be governed by
the allele set corresponding to its location in the string.

To use the string genome in your code, you must include the string genome header file in each of your
files that uses the string genome. You must also include the string genome source file (it contains
template specialization code) in one (and only one) of your source files. Including the string genome
source file will force the compiler to use the string specializations. If you do not include the string
genome source file you will get the generic array routines instead (and some of the allele methods will
not work as expected).

see also: GA1DArrayAlleleGenome, GAAlleleSet, GAAlleleSetArray

class hierarchy

typedef GAAl | el eSet <char > GASt ri ngAl | el eSet

typedef GAAI | el eSet Cor e<char > GAStri ngAl | el eSet Core

typedef GAAl | el eSet Array<char> GASt ri ngAl | el eSet Array

typedef GALDArrayAl |l el eGenone<char > GASt ri ngGenone
constructors

GASt ri ngGenome(unsi gned int |ength, const GAStringAlleleSet & GAGenone:: Eval uator
obj ective = NULL, void * userData = NULL)

GAStri ngGenome(const GAStringAll el eSet Array & GAGenone: : Eval uator objective = NULL, void
* userData = NULL)

GASt ri ngGenome(const GAStri ngGenone&)

genetic operators for this class

GAStringGenome: : Uniformnitializer
GAStringGenone: : Orderedlnitializer
GASt ri ngGenone: : Fl i pMut at or

GASt ri ngGenone: : SwapMuit at or

GASt ri ngGenone: : Uni f or nCr ossover
GASt ri ngGenone: : EvenOddCr ossover
GASt ri ngGenone: : OnePoi nt Cr ossover
GASt ri ngGenone: : TwoPoi nt Cr ossover
GASt ri ngGenone: : Parti al Mat chCr ossover
GASt ri ngGenone: : Or der Cr ossover
GASt ri ngGenone: : Cycl eCrossover

default genetic operators for this class

initialization: GAStringGenone: :Uniformnitializer
comparison: GASt ri ngGenone: : El enment Conpar at or
mutation: GASt ri ngGenone: : Fl i pMut at or
crossover: GASt ri ngGenone: : Uni f or nCr ossover

GAlib Version 2.4, Document Revision B 58 19-Aug-96



Programming Interface: GATreeGenome<T>

GATreeGenome<T>

The tree genome is a template class. It is derived from the GAGenome class as well as the GATree<>
class. The tree genome can be used for direct manipulation of tree objects. It can be used to represent
binary trees as well as non-binary trees.

You must define an initialization operator for this class. The default initializer is Nolnitializer - if you do
not assign an initialization operator then you'll get errors about no initializer defined when you try to
initialize the genome.

see also: GATree

see also; GAGenome

class hierarchy
cl ass GATreeGenone<T> : public GATree<T>, public GAGenone

constructors

GATr eeGenome( GAGenone: : Eval uat or objective = NULL, void * userData = NULL)
GATreeGenone(const GATreeCGenome<T> &)

genetic operators for this class

GATreeGenome<>: : Destructi veMit at or
GATr eeGenome<>: : SwapSubt r eeMut at or
GATr eeGenonme<>: : SwapNodeMut at or
GATr eeGenone<>: : OnePoi nt Cr ossover

default genetic operators for this class

initialization: GAGenone: : Nol nitializer
comparison: GAGenone: : NoConpar at or
mutation: GATr eeCGenone<>: : SwapSubt r eeMut at or
crossover: GATr eeCGenone<>: : OnePoi nt Cr ossover

GAlib Version 2.4, Document Revision B 59 19-Aug-96



Programming Interface: GAEvalData

GAEvalData

The evaluation data object is a generic base class for genome- and/or population-specific data. Whereas
the userData member of the genome is shared by all genomes in a population, the evalData member is
unique to each genome. The base class defines the copy/clone interface for the evaluation data object.
Your derived classes should use this mechanism. Any derived class must define a clone and copy
member function. These will be called by the base class when the evaluation data is cloned/copied by
the genomes/populations.

class hierarchy
cl ass GAEval Data : public GAI D

constructors

GAEval Dat a()
GAEval Dat a( const GAEval Dat a&)

member functions

GAEval Dat a* cl one() const
voi d copy(const GAEval Dat a&)

GAlib Version 2.4, Document Revision B 60 19-Aug-96



Programming Interface: GABin2DecPhenotype

GABin2DecPhenotype

The binary-to-decimal phenotype defines the mapping from binary string to decimal values. A
mapping for a single binary-to-decimal conversion consists of a range of decimal values and a number
of bits. For example, a map of 8 bits and range of [0,255] would use 8 bits to represent the numbers
from 0 to 255, inclusive. This object does reference counting in order to minimize the memory overhead
imposed by instantiating binary-to-decimal mappings.

constructors

GABi n2DecPhenot ype()
GABi n2DecPhenot ype(const GABi n2DecPhenot ype&)

member function index

void add(unsigned int nbits, float nmin, float max)
void remove(unsi gned int which)

int size() const

int nPhenotypes() const

float mn(unsigned int which) const

float max(unsigned int which) const

int |ength(unsigned int which) const

int offset(unsigned int which) const

voi d |ink(GABi n2DecPhenot ype&)

void unlink()

member function descriptions

add

Create a mapping that tells the phenotype that nbits should be used to represent a floating point
number from min to max, inclusive.

i nk
unl i nk

The phenotype object does reference counting to reduce the number of instantiated objects. Use the link
member to make a phenotype object refer to another. Use the unlink member to remove the connection.
When you unlink, the phenotype makes its own copy of the mapping information.

I ength
Returns the number of bits required for the specified mapping.

max
m n

Returns the maximum/minimum decimal value for the specified mapping.
of f set

Returns the offset (in bits) for the specified mapping.

remove

Removes a single binary-to-decimal from the phenotype.

size

Returns the number of bits that the set of mappings requires for converting a decimal value to binary
and back again.

GAlib Version 2.4, Document Revision B 61 19-Aug-96



Programming Interface: GAAlleleSet<T>

GAAlleleSet<T>

The allele set class is a container for the different values that a gene may assume. It can contain objects
of any type as long as the object has the =, ==, and != operators defined.

Allele sets may be enumerated, bounded, or bounded with discretization. For example, an integer
allele set may be defined as {1,3,5,2,99,-53} (an enumerated set). A bounded float set may be defined
such as [2,743) (the set of numbers from 2, inclusive, to 743, exclusive). A bounded, discretized set may
defined such as [4.5,7.05](0.05) (the set of numbers from 4.5 to 7.5, inclusive, with increment of 0.05).

If you call the allele member function with no argument, the allele set picks randomly from the alleles it
contains and returns one of them.

constructors
GAAl | el eSet ()

GAAl | el eSet (unsigned int n, const T a[])

GAAl | el eSet (const T& | ower, const T& upper, GAAll el e::BoundType
| ower bound=GAAl | el e: : I NCLUSI VE, GAAIl | el e: : BoundType upper bound=GAAIl | el e: : | NCLUSI VE)

GAAl | el eSet (const T& | ower, const T& upper, const T& increment, GAAll el e::BoundType
| ower bound=GAAl | el e: : I NCLUSI VE, GAAIl | el e: : BoundType upper bound=GAAIl | el e: : | NCLUSI VE)

GAAl | el eSet (const GAAl | el eSet <T>& set)

member function index

GAAl | el eSet <T> * cl one() const

T add(const T& allele)

T renmove(T& allele)

T allele() const

T allele(unsigned int i)

int size() const

T lower () const

T upper () const

T inc() const

GAAl | el e: : BoundType | ower BoundType() const
GAAl | el e: : BoundType upperBoundType() const
GAAl | el e:: Type type() const

void link(GAAlIl el eSet <T>&) void unlink()

member function descriptions

add
remove

Add/Remove the indicated allele from the set. This method works only for enumerated allele sets. Both
functions return zero if the operation was successful, non-zero status otherwise.

| ower
upper

Returns the lower/upper bounds on the allele set. If the allele set is enumerated, lower returns the first
element of the set and upper returns the last element of the set.

inc

Returns the increment of the allele set. If the set is not discretized, the first element or lower bounds of
the set is returned.

GAlib Version 2.4, Document Revision B 62 19-Aug-96



Programming Interface: GAAlleleSet<T>

| ower BoundType
upper BoundType

Returns GAAllele::INCLUSIVE or GAAllele::EXCLUSIVE to indicate the type of bound on the limits of
the allele set. If no bounds have been defined, these method return GAAllele::NONE.

i nk
unl i nk

The alleleset object does reference counting to reduce the number of instantiated objects. Use the link
member to make an alleleset object refer to the data in another. Use the unlink member to remove the
connection. When you unlink, the alleleset makes its own copy of the set data.

size

Returns the number of elements in the allele set. This member is meaningful only for the enumerated
allele set.

type

Returns GAAllele::ENUMERATED, GAAllele:BOUNDED, or GAAIllele:DISCRETIZED to indicate the
type of allele set that has been defined. The type of the allele set is specified by the creator used to
instantiate the allele set.

GAlib Version 2.4, Document Revision B 63 19-Aug-96



Programming Interface: GAAlleleSetArray<T>

GAAlleleSetArray<T>

The GAAlleleSetArray is a container object with an array of allele sets.

constructors

GAAl | el eSet Array()
GAAl | el eSet Array(const GAAl | el eSet <T>&)
GAAl | el eSet Array(const GAAl | el eSet Array<T>&)

member function index

int size() const

const GAAl | el eSet <T>& set (unsigned int i) const
int add(const GAAll el eSet <T>& s)

int add(unsigned int n, const T a[])

int add(const T& | ower, const T& upper, GAAll el e::BoundType | b=GAAI | el e:: | NCLUSI VE,
GAAl | el e: : BoundType ub=GAAl | el e: : | NCLUSI VE)

int add(const T& | ower, const T& upper, const T& increnment, GAAll el e::BoundType
| b=GAAIl | el e: : | NCLUSI VE, GAAl | el e: : BoundType ub=GAAIl | el e: : | NCLUSI VE)

int remove(unsigned int)
member function descriptions

add

Use the add members to append an allele set to the end of the array. Each of the overloaded add
members invokes a corresponding allele set creator, so you can use the appropriate add member for
your particular allele set application.

renmove
Remove the indicated allele set from the array. Returns zero if successful, non-zero otherwise.
size

Returns the number of allele sets in the array.

GAlib Version 2.4, Document Revision B 64 19-Aug-96



Programming Interface: GAParameter and GAParameterList

GAParameter and GAParameterList

The parameter list object contains information about how genetic algorithms should behave. Each
parameter list contains an array of parameters. Each parameter is a name-value pair, where the name is
a string (e.g. "number_of_generations") and the value is an int, float, double, char, string, boolean, or
pointer.

Each parameter is uniquely identified by a pair of names: the full name and the short name. Associated
with the names is a value. Each parameter also has a type from the enumerated list of types shown
above. The GAParameter object automatically does type coercion of the pointer that is passed to it based
upon the type that is passed to it upon its creation. The type cannot be changed once the parameter has
been created.

typedefs and constants
enum GAPar anet er:: Type {BOOLEAN, CHAR, STRING, |NT, FLOAT, DOUBLE, PO NTER}

constructors

GAPar anet er (const char* fn, const char* sn, Type tp, const void* v)
GAPar anet er (const GAPar anet er & ori g)

member function index

voi d copy(const GAParaneter &)

char* full name() const

char* shrtname() const

const voi d* value() const

const voi d* value(const void* v) Type type() const

constructors

GAPar anet er Li st ()
GAPar anet er Li st (const GAPar anet er Li st &)

member function index

nt size() const

nt get (const char*, void*) const

nt set(const char*, const void*)

nt set(const char* s, int v)

nt set (const char* s, unsigned int v)

nt set(const char* s, char v)

nt set(const char* s, char* v)

nt set(const char* s, double v)

nt add(const char*, const char*, GAParaneter::Type, const void*)
nt renove();

GAPar anet er & operator[](unsigned int i) const

GAPar anet er & next ()

GAPar anet er & prev()

GAPar aneter& current () const

GAPar aneter & first ()

GAPar anet er & | ast ()

GAPar anet er* operator()(const char* nane)

int parse(int& argc, char **argv, GABool ean flag = gaFal se)
int wite(const char* filenane) const

int wite(ostream& os) const

int read(const char* filenane)

int read(istream& is)

ostream& operator<<(ostream& os, const GAParaneterList& plist)
i stream& operator>>(istream% i s, GAParaneterlListé& plist)

GAlib Version 2.4, Document Revision B 65 19-Aug-96



Programming Interface: GAParameter and GAParameterList

member function descriptions

add

Add a parameter with specified name, type, and default value to the parameter list. This becomes the
current parameter.

current

Return a reference to the current parameter in the list.

first

Return a reference to the first parameter in the list. This becomes the current parameter.
get

Fills the contents of the space pointed to by ptr with the current value of the named parameter. Returns
0 if the parameter was found, non-zero otherwise.

| ast

Return a reference to the last parameter in the list. This becomes the current parameter.
next

Return a reference to the next parameter in the list. This becomes the current parameter.
parse

Parse an argument list (in command-line format) for recognized name-value pairs. If you pass gaTrue as
the third argument then this method will post warnings about names that it does not recognize.

prev
Return a reference to the next parameter in the list. This becomes the current parameter.
read

Read a parameter list from the specified file or stream. set

Set the named parameter to the specified value. Returns 0 if the paramter was found and successfully
set, non-zero otherwise. You can use either the full or short name to specify a parameter.

size

Returns the number of parameters in the parameter list.
renmove

Remove the current parameter from the parameter list.
write

Write the parameter list to the specified file or stream.

GAlib Version 2.4, Document Revision B 66 19-Aug-96



Programming Interface: GAStatistics

GAStatistics

The statistics object contains information about the current state of the genetic algorithm objects. Every

genetic algorithm contains a statistics object.

The statistics object defines the following enumerated constants for use by the selectScores member.
They can be bitwise-ORed to specify desired combinations of components. Use the class name to refer to
the values, for example GAStatistics::Mean | GAStatistics::Deviation

typedefs and constants

enum { NoScores, Mean, Maximum M ninum Deviation,

constructors

GASt ati stics()
GASt atistics(const GAStatistics&)

member function index

voi d copy(const

float online() const
float offline() const

float
fl oat

fl oat worstEver() const
fl oat bestEver() const

nt

generation() const

fl oat convergence() const

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

sel ections() const
crossovers() const

mut ati ons() const

repl acenents() const
nConver gence(unsi gned int)
nConvergence() const

GAStatistics &;

nBest Genones(const GAGenoneg&,

nBest Genones() const

scor eFrequency(unsi gned int
scor eFrequency() const
flushFrequency(unsi gned int
flushFrequency() const

char* scoreFil ename(const char
char* scoreFil ename() const
sel ect Scores(int whi chScores)

nt
nt

sel ect Scores() const

X)

X)

initial (Scorel D w=Maxi munm) const
current (Scorel D w=Maxi mum) const

unsi gned int)

*filenane)

GABool ean recordDi versity(GABool ean fl ag)
GABool ean recordDi versity() const
void flushScores()
voi d update(const GAPopul ati on& pop)

voi d reset (const GAPopul ati on& pop)

const GAPopul ati on& best Popul ation() const

const GAGenome& best | ndivi dual (unsigned int
scores(const char* filenanme, Scorel D whi ch=NoScor es)

ostream& operat or <<(ostreang,

GAlib Version 2.4, Document Revision B

nt
nt
nt
nt

scores(ostream& os, Scorel D whi ch=NoScor es)
wite(const char* filenanme) const

wite(ostream& os) const;

const GAStatistics&)

67

Al |l Scores }

n=0) const

19-Aug-96



Programming Interface: GAStatistics

member function descriptions

best Ever

Returns the score of the best individual ever encountered.

best | ndi vi dua

This function returns a reference to the best individual encountered by the genetic algorithm.
best Popul ati on

This function returns a reference to a population containing the best individuals encountered by the
genetic algorithm. The size of this population is specified using the nBestGenomes member function.

convergence

Returns the current convergence. Here convergence means the ratio of the nth previous best-of-
generation to the current best-of-generation.

crossovers

Returns the number of crossovers that have occurred since initialization.
current

Returns the specified score from the current population.
flushFrequency

Set/Get the frequency at which the generational scores should be flushed to disk. A score frequency of
100 means that at every 100th recorded score the scores buffer will be appended to the scores file.

flushScores

Force a flush of the scores buffer to the score file.
generation

Returns the current generation number.

initial

Returns the specified score from the initial population.
mut ati ons

Returns the number of mutations that have occurred since initialization.
nBest Genones

Set/Get the number of unique best genomes to keep.
nConvergence

Set/Get the number of generations to use for the convergence measure. A value of 10 means the best-of-
generation from 10 generations previous will be used for the convergence test.

of fline
Returns the average of the best-of-generation scores.
online

Returns the average of all scores.

GAlib Version 2.4, Document Revision B 68 19-Aug-96



Programming Interface: GAStatistics

recordDi versity

This boolean option determines whether or not the diversity of the population will be calculated each
generation. By default, this option is set to false.

repl acements
Returns the number of replacements that have occurred since initialization.

reset

Reset the contents of the statistics object using the contents of the specified population.

scoreFi | ename

Set the name of the file to which the scores should be output. If the filename is set to nil, the scores will
not be written to disk. The default filename is "generations.dat".

scor eFrequency

Set/Get the frequency at which the generational scores should be recorded. A score frequency of 1
means the scores will be recorded each generation. The default depends on the type of genetic
algorithm that is being used.

sScores

Print the generational scores to the specified stream. Output is tab-delimited with each line containing
the generation number and the specified scores. You can specify which score you would like by
logically ORing one of the score identifiers listed above. The order of the tab-delimited scores is as

follows:
generation TAB nean TAB nmax TAB min TAB deviation TAB diversity NEW.I NE

sel ections
Returns the number of selections that have occurred since initialization.
sel ect Scor es

This function is used to specify which scores should be saved to disk. The argument is the logical OR of
the following values: Mean, Maximum, Minimum, Deviation, Diversity (all defined in the scope of the
GAStatistics object). To record all of the scores, pass GAStatistics::AllScores.

updat e

Update the contents of the statistics object to reflect the state of the specified population.
wor st Ever

Returns the score of the worst individual ever encountered.

GAlib Version 2.4, Document Revision B 69 19-Aug-96



Programming Interface: GAPopulation

GAPopulation

The population object is a container for the genomes. It also contains population statistics such as
average, maximum, and minimum genome objective scores. Each population contains a scaling object
that is used to determine the fitness of its genomes. The population also contains a function used for
selecting individuals from the population.

Whenever possible, the population caches the statistics. This means that the first call to one of the
statistics members will be slower than subsequent calls.

You can customize the initialization, evaluation, and sort methods. Use the appropriate member
function. Your customized functions must have the appropriate signature.

The default scaling scheme is linear scaling. The default evaluator invokes the objective function for
each genome. The default selector is roulette wheel and uses the scaled (fitness) scores for its selections.

typedefs and constants

voi d (*GAPopul ation::Initializer)(GAPopul ation &)

voi d (*GAPopul ati on:: Eval uat or) ( GAPopul ati on &)

enum SortBasis { RAW SCALED };

enum Sort Order { LOW.IS_BEST, H GH_|S_BEST }
enum Repl acement { BEST = -1, WORST = -2, RANDOM = -3 }

constructors

GAPopul ati on()
GAPopul ati on(const GAGenone&, unsigned int popsize = gaDef PopSi ze)
GAPopul ati on(const GAPopul ati on&)

member function index

GAPopul ation * clone() const

voi d copy(const GAPopul ation&)

int size(unsigned int popsize)

int size() const

float sum() const

float ave() const

float var() const

float dev() const

float max() const

float mn() const

float div() const

float div(unsigned int i, unsigned int j) const
float fitsum() const

float fitave() const

float fitmax() const

float fitm n() const

float fitvar() const

float fitdev() const

float psum(unsigned int i) const

int neval s() const

voi d touch()

void statistics(GABool ean flag = gaFal se) const
voi d diversity(GABool ean flag = gaFal se) const
voi d prepsel ect (GABool ean fl ag = gaFal se) const
GACGenone& sel ect ()

GASel ectionSchenme& sel ector() const

GASel ecti onSchene& sel ector (const GASel ecti onSchene&)
voi d scal e( GABool ean flag = gaFal se) const
GAScal i ngSchenme& scal i ng() const
GAScal i ngSchene& scal i ng(const GAScal i ngSchene&)

GAlib Version 2.4, Document Revision B 70 19-Aug-96



Programming Interface: GAPopulation

void sort (GABool ean flag = gaFal se, SortBasis basis = RAW const

Sort Order order () const

Sort Order order (SortOrder flag)

voi d eval uat e( GABool ean flag = gaFal se) const

GAPopul ati on: : Eval uat or eval uat or (GAPopul ati on: : Eval uat or func)
GAPopul ati on: : Eval uat or eval uat or (GAPopul ati on: : Eval uat or func)

void initialize()

GAPopul ation::Initializer initializer(GAPopul ation::lnitializer func)
GAPopul ation::Initializer initializer(GAPopul ation::lnitializer func)
GAGeneti cAl gorithm * geneticAl gorithm() const

GAGeneti cAl gorithm * geneti cAl gorithm GA&)

void * userData() const

void * userData(void * u)

GAEval Data * eval Data() const

GAEval Data * eval Dat a(const GAEval Dat a&)

GAGenone& i ndi vidual (unsigned int x, SortBasis basis = RAW const
GAGenone& best (unsigned int i = 0, SortBasis basis = RAW const
GAGenone& worst (unsigned int i = 0, SortBasis basis = RAW const
GAGenone * add( GAGenone *)

GAGenone * add(const GAGenone&)

GAGenone * renopve(unsigned int i, SortBasis basis = RAW

GAGenone * renove( GAGenonme *)

GAGenone * repl ace(GAGenone *, int which = gaPopRepl aceRandom SortBasis basis = RAW
GAGenone * repl ace(GAGenonme *, GAGenone *)

void destroy(int w = WORST, SortBasis basis = RAW
virtual void read(istream &)

virtual void wite(ostream & const

ostream% operator<<(ostream & const GAPopul ati on &)
i stream& operator>>(istream & GAPopul ation &)

member function descriptions

add

Add the specified individual to the population. If you call this method with a reference to a genome,
the population will clone the genome. If you call this method with a pointer to a genome, the population
will use the genome pointed to by the pointer. From then on the population is responsible for deleting
the genome.

ave
Returns the average of the objective scores.
best

Returns a reference to the best individual in the population. Use the SortBasis flag to specify whether
you want the best in terms of raw objective score or scaled (fitness) score.

destroy

Remove the specified individual from the population and free the memory used by that individual. Use
the SortBasis flag to specify whether to use raw objective score or scaled (fitness) score when determining
which genome to destroy.

dev
Returns the standard deviation of the objective scores.
div

Returns the diversity of the population. Diversity is a number between 0 and 1 where 0 indicates that
each individual is completely different than every other individual. If you specify two indices, this

GAlib Version 2.4, Document Revision B 71 19-Aug-96



Programming Interface: GAPopulation

member function returns the diversity of the specified individuals (it invokes the comparison function
for those individuals).

eval Dat a

Set/Get the evaluation data for the population. This object is unrelated to any evaluation data objects
used by the genomes in the population.

eval uat e

Evaluate the population using the method set by the evaluator function. The default evaluator simply
calls the evaluate member of each genome in the population. If you call this function with gaTrue then
the population performs the evaluation even if it has already cached the evaluation results.

eval uat or

Specifies which function to use to evaluate the population. The specified function must have the proper
signature.

fitave

Returns the average of the fitness scores.
fitdev

Returns the standard deviation of the fitness scores.
fitmax

Returns the maximum fitness score.
fitmn

Returns the minimum fitness score.
fitsum

Returns the sum of the fitness scores.
fitvar

Returns the variance of the fitness scores.
geneti cAl gorithm

Set/Get the genetic algorithm that ‘owns' this population. A return value of nil indicates that the
population is owned by no genetic algorithm.

i ndi vi dual

Returns a reference to the specified individual. Indices for individuals in the population start at 0 and go
to size()-1. the Oth individual is the best individual when the population has been sorted. Use the
SortBasis flag to specify whether you want the ith individual based upon the raw objective score or
scaled (fitness) score.

initialize

Initialize the population using the method set by initializer. The default initializer simply calls the
initialize method of each genome in the population.

GAlib Version 2.4, Document Revision B 72 19-Aug-96



Programming Interface: GAPopulation

initializer

Specifies which function to use to initialize the population. The specified function must have the proper
signature.

max

Returns the maximum objective score in the population.

m n

Returns the minimum objective score in the population.

order

Set/Get the sort order. A population may be sorted in two ways, highest-score-is-best or lowest-score-is-
best.

prepsel ect

The function calls the selector's update method. It is typically called by the population before it does a
selection.

psum
Returns the partial sum of the ith fitness score in the array of (sorted) fitness scores.
remove

Remove the specified individual from the population. The genome to be replaced can be specified by
either an index or by pointer. This function returns a pointer to the genome that was removed from the
population. The caller is responsible for the memory used by the returned genome. Use the SortBasis
flag to specify whether to use raw objective score or scaled (fitness) score when determining which
genome to remove.

repl ace

Replace the specified individual with the first argument. The genome to be replaced can be specified by
either an index or by pointer. This function returns a pointer to the genome that was replaced. If no
genome was replaced or the specified index or pointer is bogus, it returns nil. Use the SortBasis flag to
specify whether to use raw objective score or scaled (fitness) score when determining which genome to
replace.

scal e

Scale the raw (objective) scores in the population using the scaling method. If you call this function with
gaTrue then the scaled scores are recalculated even if the population has already cached them.

scal i ng
Set/Get the scaling method for this population.
sel ect

Returns a reference to a genome from the population using the selection scheme associated with the
population.

sel ect or

Set/Get the selection method for this population.

GAlib Version 2.4, Document Revision B 73 19-Aug-96



Programming Interface: GAPopulation

size

Set/Get the number of individuals in the population. If you resize to a larger size, the new individuals
will be initialized but not evaluated. If you resize to a smaller size, the best individuals will be kept.

sort
Sort the individuals in the population. Individuals may be sorted based upon their raw or scaled scores.
statistics

Calculate the population statistics. This method is automatically invoked whenever any of the
population statistics are requested. If you call this function with gaTrue then the statistics are
recalculated even if the population has already cached them.

sum
Returns the sum of the objective scores.
touch

The population object remembers its state so that it does not execute the evaluate or sort methods unless
its state has been changed. If you want to force the population to execute any of its methods the next
time they are invoked, invoke this method.

user Dat a

Set/Get the user data pointer for the population. You can use the user data member to store a pointer to
any object.

var
Returns the variance of the objective scores.
wor st

Returns a reference to the worst individual in the population. Use the SortBasis flag to specify whether
you want the worst in terms of raw objective score or scaled (fitness) score.

GAlib Version 2.4, Document Revision B 74 19-Aug-96



Programming Interface: GAScalingScheme

GAScalingScheme

The scaling object is embedded in the population object. The base scaling object is not instantiable. This
object keeps track of the fitness scores (not the objective scores) of each individual in the population. The
genomes that it returns are the genomes in the population to which it is linked; it does not make its own
copies.

For details about how to write your own scaling scheme, see the customizations section.

constructors

GAScal i ngSchene()
GAScal i ngSchene(const GAScal i ngSchene& s)

member function index

virtual GAScal i ngSchenme * clone() const
virtual void copy(const GAScal i ngSchene &)
virtual void eval uate(const GAPopul ation & p)

built-in scaling schemes

GAlib contains a number of instantiable scaling objects derived from the base class. Here are the
constructors for these scaling schemes:

GANoScal i ng()
The fitness scores are identical to the objective scores. No scaling takes place.
GALi near Scal i ng(fl oat ¢ = gaDefLi near ScalingMultiplier)

The fitness scores are derived from the objective scores using the linear scaling method described in
Goldberg's book. You can specify the scaling coefficient. Negative objective scores are not allowed with
this method. Objective scores are converted to fitness scores using the relation

f=aeobj+b

where aand b are calculated based upon the objective scores of the individuals in the population as
described in Goldberg's book.

GASi gmaTruncati onScal i ng(fl oat ¢ = gaDef SigmaTruncati onMul tiplier)

Use this scaling method if your objective scores will be negative. It scales based on the variation from
the population average and truncates arbitrarily at 0. The mapping from objective to fitness score for
each individual is given by

f = obj - (obj_ave - ¢ = obj_dev)
GAPower LawScal i ng(int k = gaDef Power Scal i ngFact or)
Power law scaling maps objective scores to fitness scores using an exponential relationship defined as
f = obj*

GAShari ng( GAGenome: : Conpar ator func = 0,
float cutoff = gaDef SharingCutoff, float al pha = 1)

This scaling method is used to do speciation. The fitness score is derived from its objective score by
comparing the individual against the other individuals in the population. If there are other similar
individuals then the fitness is derated. The distance function is used to specify how similar to each other

GAlib Version 2.4, Document Revision B 75 19-Aug-96



Programming Interface: GAScalingScheme

two individuals are. A distance function must return a value of 0 or higher, where 0 means that the two
individuals are identical (no diversity). For a given individual,

obj

n
[o]

<,
=0

f=

J

d; = distance between current individual and individual j
n = number of individuals in the population

The default sharing object uses the triangular sharing function described in Goldberg's book. You can
specify the cutoff value (sigma in Goldberg's book) using the sigma member function. The curvature of
the sharing function is controlled by the alpha value. When alpha is 1.0 the sharing function is a
straight line (triangular sharing). If you specify a comparator, that function will be used as the distance
function for all comparisons. If you do not specify a comparator, the sharing object will use the default
comparator of each genome.

Notice that the sharing scaling differs depending on whether the objective is to maximized or
minimized. If the goal is to maximize the objective score, the raw scores will be divided by the sharing
factor. If the goal is to minimize the objective score, the raw scores will be multiplied by the sharing
factor. You can explicitly tell the sharing object to do minimize- or maximize-based scaling by using the
minimaxi member function. By default, it uses the min/max settings of the genetic algorithm that is
using it (based on information in the population with which the sharing object is associated). If the
scaling object is associated with a population that has been created independently of any genetic
algorithm object, the sharing object will use the population’s order to decide whether to multiply or
divide to do its scaling.

GAlib Version 2.4, Document Revision B 76 19-Aug-96



Programming Interface: GASelectionScheme

GASelectionScheme

Selection schemes are used to pick genomes from a population for mating. The GASelectionScheme
object defines the basic selector behavior. It is an abstract class and cannot be instantiated. Each selector
object may be linked to a population from which it will make its selections. The select member returns a
reference to a single genome. A selector may operate on the scaled objective scores or the raw objective
scores. Default behavior is to operate on the scaled (fitness) scores.

For details about how to write your own selection scheme, see the customizations section.

typedefs and constants
enum { RAW SCALED };

constructors

GASel ecti onScheme(int which = FI TNESS)
GASel ecti onScheme(const GASel ecti onScheneg&)

member function index

virtual GASel ectionScheme* clone() const;

virtual void copy(const GASel ecti onScheme& ori g)
virtual void assign(GAPopul ati on& pop)

virtual void update()

virtual GAGenone& sel ect() const;

built-in selection schemes

GAlib contains a number of instantiable scaling objects derived from the base class. Here are the
constructors for these scaling schemes:

GARankSel ect or (i nt w=GASel ecti onScheme: : SCALED)
The rank selector picks the best member of the population every time.
GARoul et t eWheel Sel ect or (i nt w=GASel ecti onSchenme: : SCALED)

This selection method picks an individual based on the magnitude of the fitness score relative to the rest
of the population. The higher the score, the more likely an individual will be selected. Any individual
has a probability p of being chosen where p is equal to the fitness of the individual divided by the sum
of the fitnesses of each individual in the population.

GATour nament Sel ect or (i nt w=GASel ecti onScheme: : SCALED)

The tournament selector uses the roulette wheel method to select two individuals then picks the one
with the higher score. The tournament selector typically chooses higher valued individuals more often
than the RouletteWheelSelector.

GADSSel ect or (i nt w=GASel ecti onSchenme: : SCALED)

The deterministic sampling selector (DS) uses a two-staged selection procedure. In the first stage, each
individual's expected representation is calculated. A temporary population is filled using the
individuals with the highest expected numbers. Any remaining positions are filled by first sorting the
original individuals according to the decimal part of their expected representation, then selecting those
highest in the list. The second stage of selection is uniform random selection from the temporary
population.

GAlib Version 2.4, Document Revision B 77 19-Aug-96



Programming Interface: GASelectionScheme

GASRSSel ect or (i nt w=GASel ecti onScheme: : SCALED)

The stochastic remainder sampling selector (SRS) uses a two-staged selection procedure. In the first
stage, each individual's expected representation is calculated. A temporary population is filled using the
individuals with the highest expected numbers. Any fractional expected representations are used to
give the individual more likeliehood of filling a space. For example, an individual with e of 1.4 will
have 1 position then a 40% chance of a second position. The second stage of selection is uniform random
selection from the temporary population.

GAUni f or mSel ect or (i nt w=GASel ecti onScheme: : SCALED)

The stochastic uniform sampling selector picks randomly from the population. Any individual in the
population has a probability p of being chosen where p is equal to 1 divided by the population size.

GAlib Version 2.4, Document Revision B 78 19-Aug-96



Programming Interface: GAArray<T>

GAArray<T>

The GAArray<T> object is defined for your convenience so that you do not have to create your own
array object. It is a template-ized container class whose elements can contain objects of any type. The 1-,
2-, and 3-dimensional arrays used in GAlib are all based upon this single-dimensional array object. This
object is defined in the file arraytmpl.h.

INIEEEEEEEEEE ... The squares are elements in the array. Arrays are 1
FLLELEE EE S PR L L L e R EEEREEERE SRR LR E et - - -
SR BRI S dimensional, but derived classes can have 2 or more

dimensions. Each element contains a user-specified object.

Any object in the array must have the following methods defined and publicly available:

copy constructor operator ==
operator = operator !=

The elements in an array are indexed starting with 0 (the first element in the array is element number
0). The last element in array with n elements is element n-1.

constructors

GAArray(unsi gned int)
GAArray(const GAArray<T>&)

member function index

GAArray<T> & operator=(const GAArray<T>& orig)

GAArray<T> & operator=(const T array [])

GAArray<T> * clone()

const T & operator[](unsigned int i)

const T & operator[](unsigned int i)

voi d copy(const GAArray<T>& orig)

voi d copy(const GAArray<T>& orig, unsigned int dest, unsigned int src, unsigned int

| engt h)
void nove(unsigned int dest, unsigned int src, unsigned int |ength)
void swap(unsigned int i, unsigned int j)

int size() const
int size(unsigned int n)

int equal (const GAArray<T>& b, unsigned int dest, unsigned int src, unsigned int |ength)
const

int operator==(const GAArray<T>& a, const GAArray<T>& b)
int operator!=(const GAArray<T>& a, const GAArray<T>& b)

member function descriptions

cl one

Return a pointer to an exact duplicate of the original array. The caller is responsible for the memory
allocated by the call to this function.

copy

Duplicate the specified array or part of the specified array. If duplicating a part of the specified array,
length elements starting at position src in the original are copied into position dest in the copy. If there
is not enough space in the copy, the extra elements are not copied.

equal

Return 1 if the specified portion of the two arrays is identical, return 0 otherwise.

GAlib Version 2.4, Document Revision B 79 19-Aug-96



Programming Interface: GAArray<T>

nmove

Move the number of elements specified with length from position src to position dest.
operator[]

Return a reference to the contents of the ith element of the array.

size

Return the number of elements in the array.

swap

Swap the contents of element i with the contents of element j.

GAlib Version 2.4, Document Revision B 80 19-Aug-96



Programming Interface: GABinaryString

GABinaryString

The binary string object is a simple implementation of a string of bits. Each bit is represented by a
single word of memory (no fancy bit-munging happens here). The binary string class defines the

following member functions. Binary strings are resizable.

constructors

GABi naryString(unsigned int |ength)
GABi naryString(const GABi naryString&)

member function index

voi d copy(const GABi naryString&)

int resize(unsigned int)

int size() const

short bit (unsigned int a) const
short bit(unsigned int a, short val)

int equal (const GABinaryString& b, unsigned int dest,

| engt h) const

voi d copy(const GABi naryString& orig, unsigned int dest

| ength

voi d nove(unsigned int dest, unsigned int src, unsigned int

void set (unsigned int a, unsigned int |ength)
voi d unset (unsigned int a, unsigned int |ength)
voi d random ze(unsigned int a, unsigned int |ength)

member function descriptions

copy

Makes an exact copy of the specified string. If invoked with a range of bits then copies the specified

range of bits.

bi t

Set/Get the specified bit.

equal

Returns 1 if the specified range of bits are equal, 0 otherwise.
nmove

Move length bits starting at src to dest.

set/unset

Set/Unset length bits starting at a

size
resize

Set/Get the length of the bit string.
random ze

Set to random values length bits starting at a

GAlib Version 2.4, Document Revision B 81

unsi gned i nt

unsigned int src

unsi gned int

unsi gned int

19-Aug-96



Programming Interface: GAList<T> and GAListlter<T>

GAList<T> and GAListlter<T>

The GALIst<T> object is defined for your convenience so that you do not have to create your own list
object. It is a template-ized container class whose nodes can contain objects of any type. The GAList<T>
object is circular and doubly-linked. A list iterator object is also defined to be used when moving around
the list to keep track of the current, next, previous, or whichever node. Iterators do not change the state
of the list.

The circles are nodes in the list. Each node contains —
a user-specified object; the initialization method FG*G*G*':'*':'#
determines the size of the list and the contents of

each node. The list is circular and doubly linked.

The template-ized GAList<T> is derived from a generic list base class called GAListBASE. The template
list is defined in listtmpl.h, the list base class is defined in listbase.h

Any object used in the nodes must have the following methods defined and publicly available:

copy constructor operator ==
operator = operator !=

Each list object contains an iterator. The list's traversal member functions (next, prev, etc) simply call the
member functions on the internal iterator. You can also instantiate iterators external to the list object so
that you can traverse the list without modifying its state.

The list base class defines constants for specifying where insertions should take place (these are relative
to the node to which the iterator is currently pointing).

Nodes in the list are numbered from 0 to 1 less than the list size. The head node is node 0.

When you do an insertion, the list makes a copy of the specified object (allocating space for it in the
process). The internal iterator is left pointing to the node which was just inserted. The insertion function
uses the copy constructor member to do this, so the objects in your list must have a copy constructor
defined. The new node is inserted relative to the current location of the list's internal iterator. Use the
where flag to determine whether the new node will be inserted before or after the current node, or if
the new node should become the head node of the list.

The remove member returns a pointer to the object that was in the specified node. You are responsible
for deallocating the memory for this object! The destroy member deallocates the memory used by the
object in the current node. In both cases the iterator is left pointing to the node previous to the one that
was deleted.

All of the list traversal functions (prev, next, current, etc) return a pointer to the contents of the node on
which they are operating. You should test the pointer to see if it is NULL before you dereference it.
When you call any of the traversal functions, the list's internal iterator is left pointing to the node to
which traversal function moved. You can create additional iterators (external to the list) to keep track of
multiple positions in the list.

typedefs and constants

GALi st BASE: : HEAD
GALi st BASE: : TAI L
GALi st BASE: : BEFORE
GALi st BASE: : AFTER

constructors
GALi stlter(const GALi st<T> &)

GAlib Version 2.4, Document Revision B 82 19-Aug-96



Programming Interface: GAList<T> and GAListlter<T>

member function index

T * current()

* head()

tail ()

next ()

prev()

war p(const GALi st<T>& t)
warp(const GAListlter<T>& i)
war p(unsigned int i)

L N

k= =

constructors

GALi st ()
GALi st (const T& t)
GALi st (const GALi st<T>& ori g)

member function index

GALi st<T> * clone()

voi d copy(const GALi st<T>& orig)

voi d destroy()

voi d swap(unsigned int, unsigned int)

T * renove()

void insert(GALi st<T> * t, GALi st BASE: : Locati on wher e=AFTER)
void insert(const T& t, GALi st BASE:: Locati on wher e=AFTER)
* current ()

head()

tail ()

next ()

prev()

warp(unsigned int i)

warp(const GAListlter<T>& i)

operator[] (unsigned int i)

nt size() const

T e R e
I I T

member function descriptions

These functions change the state of the list.

cl one

Return a pointer to an exact duplicate of the original list. The caller is responsible for the memory
allocated by the call to this function.

copy
Duplicate the specified list.
destroy

Destroy the current node in the list. This function uses the location of the internal iterator to determine
which node should be destroyed. If the head node is destroyed, the next node in the list becomes the
head node.

i nsert

Add a node or list to the list. The insertion is made relative to the location of the internal iterator. The
where flag specifies whether the insertion should be made before or after the current node.

renmnove

Returns a pointer to the contents of the current node and removes the current node from the list. The
iterator moves to the previous node. The caller is responsible for the memory used by the contents.

GAlib Version 2.4, Document Revision B 83 19-Aug-96



Programming Interface: GAList<T> and GAListlter<T>

swap

Swap the positions of the two specified nodes. The internal iterator is not affected. If the iterator was
pointing to one of the nodes before the swap it will still point to that node after the swap, even if that
node was swapped.

These functions do not change the contents of the list, but they change the state of the list’s
internal iterator (when invoked on a list object).

current

Returns a pointer to the contents of the current node.

head

Returns a pointer to the contents of the first node in the list.

next

Returns a pointer to the contents of the next node.

operator[]

Returns a pointer to the contents of the ith node in the list (same as warp).

prev

Returns a pointer to the contents of the previous node.

tail

Returns a pointer to the contents of the last node in the list.

war p

Returns a pointer to the contents of the ith node in the list, or a pointer to the element in the list pointed
to by the specified iterator. The head node is number 0.

GAlib Version 2.4, Document Revision B 84 19-Aug-96



Programming Interface: GATree<T> and GATreelter<T>

GATree<T> and GATreelter<T>

The GATree<T> object is defined for your convenience so that you do not have to create your own tree
object. It is a template-ized container class whose nodes can contain objects of any type. Each level in the
GATree<T> object is a circular and doubly-linked list. The eldest child of a level is the head of the
linked list, each child in a level points to its parent, and the parent of those children points to the eldest
child. Any tree can have only one root node. Any node can have any number of children. A tree
iterator is also defined to be used when moving around the list to keep track of the current, next,
parent, or whichever node. Iterators do not change the state of the tree.

# The circles are nodes in the tree. Each node contains a user-
& specified object; the initialization method determines the tree
H‘\\'\\ topology and the contents of each node. Each tree contains one
ekt k) (and only one) root node. Each level in the tree is a circular,
ﬂ:;b QE\:‘Q doubly linked list. The head of each list is called the 'eldest'

H' ﬂ' child, each node in a level has a link to its parent, and each
L parent has a link to the eldest of its children (if it has any

children).

The template-ized GATree<T> is derived from a generic tree base class called GATreeBASE. The
template tree is defined in treetmpl.h, the tree base class is defined in treebase.h

Any object used in the nodes have the following methods defined and publicly available:

copy constructor operator ==
operator = operator !=

Each tree object contains an iterator. The tree's traversal member functions (next, prev, etc) simply call
the member functions on the internal iterator. You can also instantiate iterators external to the tree object
so that you can traverse the tree without modifying its contents.

The tree base class defines constants for specifying where insertions should occur.

Nodes in a tree are numbered starting at 0 then increasing in a depth-first traversal of the tree. The root
node is node 0. A tree can have only one root node, but any node in the tree can have any number of
children.

When you do an insertion, the tree makes a copy of the specified object (allocating space for it in the
process). The internal iterator is left pointing to the node which was just inserted. The insertion function
uses the copy constructor member to do this, so the objects in your tree must have a copy constructor
defined. The new node is inserted relative to the current location of the tree's internal iterator. Use the
where flag to determine whether the new node will be inserted before, after, or below the current node,
or if the new node should become the root node of the tree.

The remove member returns a pointer to a tree. The root node of this tree is the node at which the
iterator was pointing. You are responsible for deallocating the memory for this tree! The destroy
member deallocates the memory used by the object in the current node and completely destroys any
subtree hanging on that node. In both cases, the iterator is left pointing to the elder child or parent of
the node that was removed/destroyed.

All of the tree traversal functions (prev, next, current, etc) return a pointer to the contents of the node on
which they are operating. You should test the pointer to see if it is NULL before you dereference it.
Also, the iterator is left pointing to the node to which you traverse with each traversal function. You can
create additional iterators (external to the tree) to keep track of multiple positions in the tree.

GAlib Version 2.4, Document Revision B 85 19-Aug-96



Programming Interface: GATree<T> and GATreelter<T>

typedefs and constants

GATr eeBASE: : ROOT

GATr eeBASE: : BEFORE
GATr eeBASE: : AFTER
GATr eeBASE: : BELOW

constructors
GATreelter (const GATree<T>& t)

member function index

T * current()

T * root ()

T * next ()

T * prev()

T * parent()

T * child()

T * eldest()

T * youngest ()

T * warp(const GATree<T>& t)
T * warp(const GATreelter<T>& i)
T * warp(unsigned int i)

int size()

int depth()

int nchildren()

int nsiblings()

constructors

GATr ee()
GATree(const T& t)
GATr ee(const GATree<T>& ori g)

member function index

GATree<T> * clone()

voi d copy(const GATree<T>& ori Q)

voi d destroy()

void swaptree(GATree<T> * t)

void swaptree(unsigned int, unsigned int)
voi d swap(unsigned int, unsigned int)
GATree<T> * renove()

void insert(GATree<T> * t, GATreeBASE:: Locati on wher e=BELOW
void insert(const T& t, GATreeBASE:: Locati on wher e=BELOW

T * current()
* root ()

* next ()

* prev()

* parent ()

* child()

* el dest()

* youngest ()

* warp(unsigned int i)

* warp(const GATreelter<T>& i)

e e I I I

int ancestral (unsigned int i, unsigned int j) const

int size()

int depth()

int nchildren()
int nsiblings()

member function descriptions

These functions change the state of the tree.

GAlib Version 2.4, Document Revision B 86

19-Aug-96



Programming Interface: GATree<T> and GATreelter<T>

cl one

Return a pointer to an exact duplicate of the original tree. The caller is responsible for the memory
allocated by the call to this function.

copy
Duplicate the specified tree.
destroy

Destroy the current node in the tree. If the node has children, the entire sub-tree connected to the node
is destroyed as well. This function uses the location of the internal iterator to determine which node
should be destroyed. If the root node is destroyed, the entire contents of the tree will be destroyed, but
the tree object itself will not be deleted.

i nsert

Add a node or tree to the tree. The insertion is made relative to the location of the internal iterator. The
where flag specifies whether the insertion should be made before, after, or below the current node.

renove

Returns a pointer to a new tree object whose root node is the (formerly) current node of the original tree.
Any subtree connected to the node stays with the node. The iterator moves to the previous node in the
current generation, or the parent node if no elder sibling exists. The caller is responsible for the
memory used by the new tree.

swap

Swap the contents of the two specified nodes. Sub-trees connected to either node are not affected; only
the specified nodes are swapped.

swaptree

Swap the contents of the two specified nodes as well as any sub-trees connected to the specified nodes.
These functions do not change the contents of the tree, but they change the state of the tree’s
internal iterator (when invoked on a tree object).

ancestral

Returns 1 if one of the two specified nodes is the ancestor of the other, returns 0 otherwise.

child

Returns a pointer to the contents of the eldest child of the current node. If the current node has no
children, this function returns NULL.

current
Returns a pointer to the contents of the current node.
dept h

Returns the number of generations (the depth) of the tree. When called as the member function of a tree
iterator, this function returns the depth of the subtree connected to the iterator's current node.

el dest

Returns a pointer to the contents of the eldest node in the current generation. The eldest node is the
node pointed to by the ‘child’ function in the node's parent.

GAlib Version 2.4, Document Revision B 87 19-Aug-96



Programming Interface: GATree<T> and GATreelter<T>

nchildren

Returns the number of children of the node to which the iterator is pointing.

next

Returns a pointer to the contents of the next node in the current generation.

nsi bl i ngs

Returns the number of nodes in the level of the tree as the node to which the iterator is pointing.
par ent

Returns a pointer to the contents of the parent of the current node. If the current node is the root node,
this function returns NULL.

prev
Returns a pointer to the contents of the previous node in the current generation.
root

Returns a pointer to the contents of the root node of the tree.

size

Returns the number of nodes in the tree. When called as the member function of a tree iterator, this
function returns the size of the subtree connected to the iterator's current node.

war p

Returns a pointer to the contents of the ith node in the tree, or a pointer to the element in the tree
pointed to by the specified iterator. The head node is number 0 then the count increases as a depth-first
traversal of the tree.

youngest

Returns a pointer to the contents of the youngest node in the current generation.

GAlib Version 2.4, Document Revision B 88 19-Aug-96



Customizing GAlib: Deriving your own genome class

Customizing GAlib

This document describes how to extend GAlib's capabilities by defining your own genomes and genetic
operators. The best way to customize the behavior of an object is to derive a new class. If you do not
want to do that much work, GAlib is designed to let you replace behaviors of existing objects by
defining new functions.

Deriving your own genome class

You can create your own genome class by multiply-inheriting from the base genome class and your
own data type. For example, if you have already have an object defined, say MyObiject, then you would
derive a new genome class called MyGenome, whose class definition looks like this:

/1 Class definition for the new genonme object, including statically
/1 defined declarations for default evaluation, initialization,
/1 mutation, and conparison nmethods for this genone class.

class MyGenonme : public MyObject, public GAGenone {
public:
GADef i nel dentity("MyGenone", 201);
static void Init(GAGenone&);
static int Mitate(GAGenone&, float);
static float Conpare(const GAGenone& const GAGenoneg&);
static float Eval uate( GAGenone&);
static int Cross(const GAGenone& const GAGenone&, GAGenone*, GAGenone*);

public:

MyGenone() : GAGenone(lnit, Mitate, Conpare) {
eval uat or (Eval uat e) ;
crossover (Cross);

}

MyGenone(const MyGenonme& orig) { copy(orig); }

virtual ~MyGenone() {}

MyGenoneé& oper at or =(const GAGenone& ori g){
if(&rig !'=this) copy(orig);
return *this;

}

virtual GAGenome* cl one(Cl oneMet hod) const
{return new MyGenome(*this);}

virtual void copy(const GAGenonme& orig) {
GAGenone: : copy(orig); [// this copies all of the base genone parts
/1l copy any parts of MyObject here
/'l copy any parts of MyGenone here

}

/1 any datal/nmember functions specific to this new class

}s

voi d
MyGenone: : | ni t (GAGenone&) {
/'l your initializer here

}

i nt

MyGenone: : Mut at e( GAGenone&, float) {
/1 your nutator here

}

f | oat
MyGenone: : Conpar e(const GAGenone&, const GAGenone&) {

GAlib Version 2.4, Document Revision B 89 19-Aug-96



Customizing GAlib: Deriving your own genome class

/'l your conparison here

}

fl oat
MyGenone: : Eval uat e( GAGenone&) {
/'l your evaluation here

}

i nt
MyGenone: : Cross(const GAGenonme& nom const GAGenone& dad, GAGenome* sis, GAGenonme* bro){
/'l your crossover here

}

By convention, one of the arguments to a derived genome constructor is the objective function.
Alternatively (as illustrated in this example), you can hard code a default objective function into your
genome - just call the evaluator member somewhere in your constructor and pass the function you want
used as the default.

Once you have defined your genome class, you should define the intialization, mutation, comparison,
and crossover operators for it. The comparison operator is optional, but if you do not define it you will
not be able to use the diversity measures in the genetic algorithms and/or populations.

Note that the genetic comparator is not necessarily the same as the boolean operator==and operator!=
comparators. The genetic comparator returns 0 if the two individuals are the same, -1 if the comparison
fails for some reason, and a real number greater than 0 indicating the degree of difference if the
individuals are not identical but can be compared. It may be based on genotype or phenotype. The
boolean comparators, on the other hand, indicate only whether or not two individuals are identical. In
most cases, the boolean comparator can simply call the genetic comparator, but in some cases it is more
efficient to define different operators (the boolean comparators are called much more often than the
genetic comparators, especially if no diversity is being measured).

To work properly with the GAlib, you must define the following:

MyGenome( -default-args-for-your-genone-constructor )
MyGenonme( const MyGenomeg&)
virtual GAGenone* cl one(GAGenone: : Cl oneMet hod) const

If your genome adds any non-trivial member data, you must define these:

virtual ~MyGenone()
virtual copy(const GAGenone&)
virtual int equal (const GAGenone&) const

To enable streams-based reading and writing of your genome, you should define these:

virtual int read(istreamg)
virtual int wite(ostream&) const

When you derive a genome, don't forget to use the _evaluated flag to indicate when the state of the
genome has changed and an evaluation is needed. If a member function changes the state of your
genome, that member function should set the _evaluated flag to gaFalse. GAlib uses the _evaluated
flag to control its caching of the genome scores, so setting and unsetting the flag is critical. If your
member functions do not unset the flag when they modify the contents of the genome, then the genome
will not be (re)evaluated.

Assign a default crossover, mutation, initialization, and comparison method so that users don't have to
assign one unless they want to.

It is a good idea to define an identity for your genome (especially if you will be using it in an
environment with multiple genome types running around). Use the Defineldentity macro (defined in
id.h) to do this in your class definition. The Defineldentity macro sets a class ID number and the name

GAlib Version 2.4, Document Revision B 90 19-Aug-96



Customizing GAlib: Genome Initialization

that will be used in error messages for the class. You can use any number above 200 for the ID, but be
sure to use a different number for each of your classes.

When run-time type information (RTTI) has stabilized across compilers, GAlib will probably use that
instead of the Define/Declare identity macros.

Genome Initialization

The initializer takes a single argument: the genome to be initialized. The genome has already been
allocated; the intializer only needs to populate it with appropriate contents.

Here is the implementation of an initializer for the GATreeGenome<int> class.

voi d
Treelnitializer(GAGenone & c) {
GATr eeCGenomne<i nt > &chi | d=( GATr eeGenone<i nt > &) c;
/1 destroy any pre-existing tree
child.root();
chil d. destroy();
/1l Create a new tree with depth of 'depth' and each el dest node
/1 containing 'n' children (the other siblings have none).
int depth=2, n=3, count=0;
child.insert(count++, GATr eeBASE: : ROOT) ;
for(int i=0; i<depth; i++){ child.eldest();
child.insert(count++);
for(int j=0; j<n; j++) child.insert(count++, GATreeBASE: : AFTER) ;
}
}

Genome Mutation

The genome mutator takes two arguments: the genome that will receive the mutation(s) and a mutation
probability. The exact meaning of the mutation probability is up to the designer of the mutation
operator. The mutator should return the number of mutations that occured.

Most genetic algorithms invoke the mutation method on each newly generated offspring. So your
mutation operator should base its actions on the value of the mutation probability. For example, an
array of floats could flip a pmut-biased coin for each element in the array. If the coin toss returns true,
the element gets a Gaussian mutation. If it returns false, the element is left unchanged. Alternatively, a
single biased coin toss could be used to determine whether or not the entire genome should be mutated.

Here is an implementation of the flip mutator for the GA1DBinaryString class. This mutator flips a
biased coin for each bit in the string.

i nt
GA1DBi nStr Fl i pMut at or (GAGenone & c, float pnut) {
GAL1DBIi naryStri ngGenonme &chil d=( GALDBi naryStri ngGenonme &)c;
if(pmut <= 0.0) return(0);
int nMut =0;
for(int i=child.length()-1; i>=0; i--){
i f (GAFl i pCoi n(pnut)){
child.gene(i, ((child.gene(i) ==0) ?2 1: 0));
nMut ++;
}

}

return nMit;

}

GAlib Version 2.4, Document Revision B 91 19-Aug-96



Customizing GAlib: Genome Crossover

Genome Crossover

The crossover method is used by the genetic algorithm to mate individuals from the population to form
new offspring. Each genome should define a default crossover method for the genetic algorithms to use.
The sexual and asexual member functions return a pointer to the preferred sexual and asexual mating
methods, respectively. The crossover member function is used to change the preferred mating method.
The genome does not have a member function to invoke the crossover; only the genetic algorithm can
actually perform the crossover.

Some genetic algorithms use sexual mating, others use asexual mating. If possible, define both so that
your genome will work with either kind of genetic algorithm. If your derived class does not define a
cross method, an error message will be posted whenever crossover is attempted.

Sexual crossover takes four arguments: two parents and two children. If one child is nil, the operator
should be able to generate a single child. The genomes have already been allocated, so the crossover
operator should simply modify the contents of the child genome as appropriate. The crossover function
should return the number of crossovers that occurred. Your crossover function should be able to operate
on one or two children, so be sure to test the child pointers to see if the genetic algorithm is asking you
to create one or two children.

Here is an implementation of the two-parent/one-or-two-child single point crossover operator for fixed-
length genomes of the GA1DBinaryStringGenome class.

i nt
Si ngl ePoi nt Cr ossover (const GAGenone& pl, const GAGenome& p2, GAGenone* cl, GAGenome* c2){
GAL1DBIi naryStri ngGenome &non+( GALDBi naryStri ngGenone &) pl;
GAL1DBi narySt ri ngGenome &dad=( GALDBi naryStri ngGenone &) p2;
int n=0;
unsigned int site = GARandom nt (0, nmom | ength());
unsigned int len = nomlength() - site;
if(cl){
GA1DBi naryStringGenome &si s=( GALDBi naryStri ngGenonme &) *cl;
sis.copy(mom 0, 0, site);
sis.copy(dad, site, site, len);
n++;
}
if(c2){
GA1DBi naryStri ngGenome &br o=( GALDBi naryStri ngGenonme &) *c2;
bro. copy(dad, 0, 0, site);
bro. copy(nom site, site, len);
n++;
}

return n;

Genome Comparison

The comparison method is used for diversity calculations. It compares two genomes and returns a
number that is greater than or equal to zero. A value of 0 means that the two genomes are identical (no
diversity). There is no maximum value for the return value from the comparator. A value of -1 indicates
that the diversity could not be calculated.

Here is the comparator for the binary string genomes. It simply counts up the number of bits that both
genomes share. In this example, we return a -1 if the genomes are not the same length.

f1 oat
GALDBi nSt r Conpar at or (const GAGenonme& a, const GAGenone& b){ GA1DBi narySt ri ngGenome
&si s=( GALDBi naryStri ngGenone &) a; GA1DBI narySt ri ngGenome
&br o=( GALDBi naryStri ngGenone &)b;
if(sis.length() != bro.length()) return -1;

float count = 0.0;

GAlib Version 2.4, Document Revision B 92 19-Aug-96



Customizing GAlib: Genome Evaluation

for(int i=sis.length()-1; i>=0; i--)
count += ((sis.gene(i) == bro.gene(i)) ? 0 : 1);
return count/sis.length();

}

Genome Evaluation

The genome evaluator is the objective function for your problem. It takes a single genome as its
argument. The evaluator returns a number that indicates how good or bad the genome is. You must
cast the generic genome to the genome type that you are using. If your objective function works with
different genome types, then use the genome object's className and/or classID member functions to
determine the genome class before you do the casts.

Here is a simple evaluation function for a real number genome with a single element. The function tries
to maximize a sinusoidal.

fl oat

Obj ecti ve( GAGenone& g){
GAReal Genome& genome = ( GAReal Genone &) g;
return 1 + sin(genone.gene(0)*2*M PI);

}

Population Initialization

This method is invoked when the population is initialized.

Here is an implemenation that invokes the initializer for each genome in the population.

void
Popl nitializer(GAPopul ation & p){
for(int i=0; i<p.size(); i++)
p.individual (i).initialize();

Population Evaluation

This method is invoked when the population is evaluated. If your objective is population-based, you can
use this method to set the score for each genome rather than invoking an evaluator for each genome.

Here is an implementation that invokes the evaluation method for each genome in the population.

voi d
PopEval uat or (GAPopul ati on & p){
for(int i=0; i<p.size(); i++)
p.individual (i).evaluate();

Scaling Scheme

The scaling object does the transformation from raw (objective) scores to scaled (fitness) scores. The most
important member function you will have to define for a new scaling object is the evaluate member
function. This function calculates the fitness scores based on the objective scores in the population that is
passed to it.

The GAScalingScheme class is a pure virtual (abstract) class and cannot be instantiated. To make your
derived class non-virtual, you must define the clone and evaluate functions. You should also define the
copy method if your derived class introduces any additional data members that require non-trivial

copy.

GAlib Version 2.4, Document Revision B 93 19-Aug-96



Customizing GAlib: Selection Scheme

The scaling class is polymorphic, so you should define the object's identity using the GADefineldentity
macro. This macro sets a class ID number and the name that will be used in error messages for the class.
You can use any humber above 200 for the ID, but be sure to use a different number for each of your
objects.

Here is an implementation of sigma truncation scaling.

class SigmaTruncationScaling : public GAScal i ngSchene {
public:
GADef i nel dentity("Si gmaTruncati onScal i ng", 286)
Si gmaTruncati onScal i ng(fl oat megaDef Si gmaTruncati onMil tiplier)
c(m {}
Si gmaTruncati onScal i ng(const SigmaTruncati onScaling & arg)
{copy(arg);}
Si gmaTruncati onScal i ng & operator=(const GAScal i ngSchene & arg)
{ copy(arg); return *this; }
virtual ~SigmaTruncationScaling() {}
virtual GAScal i ngSchene * clone() const
{ return new SigmaTruncationScaling(*this); }
virtual void eval uate(const GAPopul ation & p);
virtual void copy(const GAScal i ngSchene & arg){
if(&rg !'= this & sameCl ass(arg)){
GAScal i ngSchene: : copy(arg);
c=((SigmaTruncationScal i ng& arg).c;
}

}
float multiplier(float fm { return c=fm }
float multiplier() const { return c; }

protect ed:
float c; /1l std deviation nultiplier
h
voi d
Si gmaTruncati onScal i ng: : eval uat e(const GAPopul ation & p) {
float f;

for(int i=0; i<p.size(); i++){
f = p.individual (i).score() - p.ave() + ¢ * p.dev()
if(f <0 f =0
p.individual (i).fitness(f)
}
}

Selection Scheme

The selection object is used to pick individuals from the population. Before a selection occurs, the
update method is called. You can use this method to do any pre-selection data transformations for your
selection scheme. When a selection is requested, the select method is called. The select method should
return a reference to a single individual from the population.

A selector may make its selections based either on the scaled (fitness) scores or on the raw (objective)
scores of the individuals in the population. Note also that a population may be sorted either low-to-high
or high-to-low, depending on which sort order was chosen. Your selector should be able to handle either
order (this way it will work with genetic algorithms that maximize or minimize).

The selection scheme class is polymorphic, so you should define the object's identity using the
GADefineldentity macro. This macro sets a class ID number and the name that will be used in error
messages for the class. You can use any number above 200 for the ID, but be sure to use a different
number for each of your objects.

GAlib Version 2.4, Document Revision B 94 19-Aug-96



Customizing GAlib: Selection Scheme

Here is an implementation of a tournament selector. It is based on the roulette wheel selector and shares
some of the roulette wheel selector's functionality. In particular, this tournament selector uses the
roulette wheel selector's update method, so it does not define its own. The select method does two
fitness-proportionate selections then returns the individual with better score.

cl ass Tournament Sel ector : public GARoul etteWheel Sel ector {
public:
GADef i nel denti ty(" Tour nanent Sel ector", 255);
Tour nanent Sel ect or (i nt w=GASel ecti onSchene: : FI TNESS)
GARoul et t eWheel Sel ector(w) {}
Tour nanent Sel ect or (const Tour nament Sel ector& orig) { copy(orig); }
Tour nanent Sel ect or & oper at or =(const GASel ecti onSchenme& ori g)
{ if(&orig !'= this) copy(orig); return *this; }
virtual ~Tournanent Sel ector() {}
virtual GASel ectionScheme* clone() const
{ return new Tournanment Sel ector; }
virtual GAGenome& sel ect() const;

b

GAGenone &

Tour nament Sel ector::select() const {
int picked=0;
float cutoff;
int i, upper, |ower;

cutof f = GARandonFl oat () ;
| ower = 0; upper = pop->size()-1;
whi | e(upper >= | ower) {
i = lower + (upper-lower)/2;
if(psunfi] > cutoff)

upper = i-1;
el se
| ower = i+1;
}
| ower = M n(pop->size()-1, |ower);
| ower = Max(0, |ower);
pi cked = | ower;
cut of f = GARandonFl oat () ;

| ower = 0; upper = pop->size()-1;
whi | e(upper >= | ower) {
i = lower + (upper-Ilower)/2;
if(psunfi] > cutoff)

upper = i-1;
el se
| ower = i+1;

}
| ower = M n(pop->size()-1, |ower);
| ower = Max(0, |ower);
GAPopul ati on:: SortBasis basis =
(which == FITNESS ? GAPopul ati on:: SCALED : GAPopul ation: : RAW ;

i f (pop->order() == GAPopul ation::LOW IS _BEST){

i f(pop->individual (I ower, basis).score() <

pop- >i ndi vi dual (pi cked, basi s).score())

pi cked = | ower;
}
el se{
i f (pop->i ndi vi dual (| ower, basis).score() >
pop- >i ndi vi dual (pi cked, basi s).score())
pi cked = | ower;
}

return pop->individual (picked, basi s);

GAlib Version 2.4, Document Revision B 95 19-Aug-96



Customizing GAlib: Genetic Algorithm

Genetic Algorithm

Here is a sample derived class that does restricted mating. In this example, one of the parents is selected
as usual. The second individual is select as the first, but it is used only if it is similar to the first
individual. If not, we make another selection. If enough selections fail, we take what we can get.

class Restrictedvati ngGA : public GASteadyStateGA {
public:
GADef i nel dentity("RestrictedMati ngGA", 288);
RestrictedMVati ngGA(const GAGenone& g) : GASteadyStateGA(g) {}
virtual ~RestrictedMatingGA() {}
virtual void step();
RestrictedMati ngGA & operator++() { step(); return *this; }

}s

voi d
RestrictedMati ngGA: : step() {
int i, k;
for(i=0; i<tnpPop->size(); i++){
nmom = &(pop->select());
k=0;
do {
k++; dad = &(pop->select());
} whil e(nom >conpar e(*dad) < THRESHOLD && k<pop->size());
stats. numsel += 2;
i f (GAFI i pCoi n(pCrossover()))
stats.nuncro += (*scross)(*mm *dad, &tnpPop->individual (i), 0);
el se
t mpPop- >i ndi vi dual (i).copy(*nmom;
stats. nunmut += tnpPop- >i ndi vi dual (i).nnutate(pMitation());
}
for(i=0; i<tnpPop->size(); i++)
pop- >add(t npPop- >i ndi vi dual (i));
pop- >eval uate(); /1 get info about current pop for next
time pop->scale(); /1l remind the population to do its scaling
for(i=0; i<tnpPop->size(); |++)
pop- >dest r oy( GAPopul ati on: : WORST, GAPopul ati on:: SCALED) ;
st ats. updat e( *pop) ; /'l update the statistics by one generation

Termination Function

The termination function determines when the genetic algorithm should stop evolving. It takes a
genetic algorithm as its argument and returns gaTrue if the genetic algorithm should stop or gaFalse if
the algorithm should continue.

Here are three examples of termination functions. The first compares the current generation to the
desired number of generations. If the current generation is less than the desired number of generations,
it returns gaFalse to signify that the GA is not yet complete.

GABool ean
GATer mi nat eUponGener ati on( GAGeneti cAl gorithm & ga){
return(ga. generation() < ga.nGenerations() ? gaFalse : gaTrue);

}

The second example compares the average score in the current population with the score of the best
individual in the current population. If the ratio of these exceeds a specified threshhold, it returns
gaTrue to signify that the GA should stop. Basically this means that the entire population has converged
to a 'good' score.

/1 stop when pop average is 95% of best
const float desiredRatio = 0.95;

GAlib Version 2.4, Document Revision B 96 19-Aug-96



Customizing GAlib: Termination Function

GABool ean
GATer m nat eUponScor eConver gence( GAGeneti cAl gorithm & ga){
if(ga.statistics().current(GAStatistics::Man) /
ga.statistics().current(GAStatistics::Mxinum > desiredRatio)
return gaTrue;
el se
return gaFal se;

}

The third uses the population diversity as the criterion for stopping. If the diversity drops below a
specified threshhold, the genetic algorithm will stop.

/1 stop when popul ation diversity is below this
const float thresh = 0.01;

GABool ean
St opWhenNoDi versity( GAGeneti cAl gorithm & ga){
if(ga.statistics().current(GAStatistics::Diversity) < thresh)
return gaTrue;
el se
return gaFal se;

}

A faster method of doing a nearly equivalent termination is to use the population's standard deviation
as the stopping criterion (this method does not require comparisons of each individual). Notice that this
judges diversity based upon the genome scores rather than their actual genetic diversity.

/1 stop when popul ation deviation is below this
const float thresh = 0.01;

GABool ean
St op\WhenNoDevi ati on( GAGeneti cAl gorithm & ga){
if(ga.statistics().current(GAStatistics::Deviation) < thresh)
return gaTrue;
el se
return gaFal se;

GAlib Version 2.4, Document Revision B 97 19-Aug-96



Descriptions of the Examples

Descriptions of the Examples

Each of the examples contains comments in the source files with complete description about what is
going on. Here is a short summary of what each one of the examples does:

exl
Fill a 2DBinaryStringGenome with alternating Os and 1s using a SimpleGA.
ex2

Generate a sequence of random numbers, then use a Bin2DecChromosome and SimpleGA to try and
match the sequence. This example shows how to use the user-data member of genomes in objective
functions.

ex3

Read a 2D pattern from a data file then try to match the pattern using a 2DBinaryStringGenome and a
SimpleGA. This example also shows how to use the GAParametes object for setting genetic algorithm
parameters and reading command-line arguments.

ex4

Fill a 3DBinaryStringChromosome with alternating 0s and 1s using a SteadyStateGA. This example uses
many member functions of the genetic algorithm to control which statistics are recorded and dumped to
file.

ex5

This example shows how to build a composite genome (a cell?) using a 2DBinaryStringGenome and a
Bin2DecGenome. The composite genome uses behaviors that are defined in each of the genomes that it
contains. The objective is to match a pattern and sequence of numbers.

ex6

Grow a GATreeGenome using a SteadyStateGA. This example illustrates the use of specialized methods
to override the default initialization method and to specialize the output from a tree. It also shows how
to use templatized genome classes. Finally, it shows the use of the parameters object to set default
values then allow these to be modified from the command line. The objective function in this example
tries to grow the tree as large as possible.

ex’

Identical in function to example 3, this example shows how to use the increment operator (++),
completion measure, and other member functions of the GA. It uses a GA with overlapping populations
rather than the non-overlapping GA in example 3 and illustrates the use of many of the GA member
functions. It also illustrates the use of the parameter list for reading settings from a file, and shows how
to stuff a genome with data from an input stream.

ex8

Grow a GAListGenome using a GA with overlapping populations. This shows how to randomly
initialize a list of integers, how to use the sigma truncation scaling object to handle objective scores that
may be positive or negative, and the 'set’ member of the genetic algorithm for controlling statistics and
other genetic algorithm parameters.

GAlib Version 2.4, Document Revision B 98 19-Aug-96



Descriptions of the Examples

ex9

Find the maximum value of a continuous function in two variables. This example uses a
GABiIn2DecGenome and simple GA. It also illustrates how to use the GASigmaTruncationScaling object
(rather than the default linear scaling). Sigma truncation is particularly useful for objective functions that
return negative values.

ex10

Find the maximum value of a continuous, periodic function. This example illustrates the use of sharing
to do speciation. It defines a sample distance function (one that does the distance measure based on the
genotype, the other based on phenotype). It uses a binary- to-decimal genome to represent the function
values.

ex1ll

Generate a sequence of descending numbers using an order-based list. This example illustrates the use
of a GAListGenome as an order-based chromosome. It contains a custom initializer and shows how to
use this custom initializer in the List genome.

ex12

Alphabetize a sequence of characters. Similar to example 11, this example illustrates the use of the
GAStringGenome (rather than a list) as an order-based chromosome.

ex13

This program runs a GA-within-GA. The outer level GA tries to match the pattern read in from a file.
The inner GA tries to match a sequence of randomly generated numbers (the sequence is generated at
the beginning of the program's execution). The inner level GA is run only when the outer GA reaches a
threshhold objective score.

ex1l4

Another illustration of how to use composite chromosomes. In this example, the composite chromosome
contains a user-specifiable number of lists. Each list behaves differently and is not affected by mutations,
crossovers, or initializations of the other lists.

ex15

The completion function of a GA determines when it is "done". This example uses the convergence to
tell when the GA has reached the optimum (the default completion measure is number-of-generations).
It uses a binary-to-decimal genome and tries to match a sequence of randomly generated numbers.

ex16

Tree chromosomes can contain any kind of object in the nodes. This example shows how to put a point
object into the nodes of a tree to represent a 3D plant. The objective function tries to maximize the size of
the plant.

ex17

Array chromsomes can be used when you need tri-valued alleles. This example uses a 2D array with
trinary alleles.

ex18

This example compares the performance of three different genetic algorithms. The genome and
objective function are those used in example 3, but this example lets you specify which type of GA you
want to use to solve the problem. You can use steady state, simple, or incremental just by specifying

GAlib Version 2.4, Document Revision B 99 19-Aug-96



Descriptions of the Examples

one of them on the command line. The example saves the generational data to file so that you can then
plot the convergence data to see how the performance of each genetic algorithm compares to the others.

ex19
The 5 Delong test problems.
ex20

Holland's royal road function. This example computes Holland's 1993 ICGA version of the Royal Road
problem. Holland posed this problem as a challenge to test the performance of genetic algorithms and
challenged other GA users to match or beat his performance.

ex21

This example illustrates various uses of the allele set in array genomes. The allele set may be an
enumerated list of items or a bounded range of continuous values, or a bounded set of discrete values.
This example shows how each of these may be used in combination with a real number genome.

ex22

This example shows how to derive a new genetic algorithm class in order to customize the replacement
method. Here we derive a new type of steady-state genetic algorithm in which speciation is done more
effectively by not only scaling fitness values but also by controlling the way new individuals are
inserted into the population.

ex23

The genetic algorithm object can either maximize or minimize your objective function. This example
shows how to use the minimize abilities of the genetic algorithm. It uses a real number genome with
one element to find the maximum or minimum of a sinusoid.

ex24

This example shows how to restricted mating using a custom genetic algorithm and custom selection
scheme. The restricted mating in the genetic algorithm tries to pick individuals that are similar (based
upon their comparator). The selector chooses only the upper half of the population (so it cannot choose
very bad individuals, unlike the roulette wheel selector, for example).

ex25

Multiple populations on a single CPU. This example uses the genetic algorithm class called a
'DemeGA'. The genetic algorithm controls the migration behavior for moving individuals between
populations. In this example, the island model is used with a stepping-stone migration behavior in
which the best individuals from each population migrate to their nearest neighboring population. You
can easily modify both the migration algorithm and the population behaviors by deriving a new class
from the DemeGA.

ex26

Travelling Salesperson Problem. Although genetic algorithms are not the best way to solve the TSP, we
include an example of how it can be done. This example uses an order-based list as the genome to
figure out the shortest path that connects a bunch of towns such that each town is visited exactly once. It
uses the edge recombination crossover operator (you can try it with the partial match crossover as well
to see how poorly PMX does on this particular problem).

ex27

Deterministic crowding. Although the algorithms built-in to GAlib allow you to do quite a bit of
customization, sometimes you'll want to derive your own class so that you can really tweak the way the

GAlib Version 2.4, Document Revision B 100 19-Aug-96



Descriptions of the Examples

algorithm works. This example shows one way of implementing the deterministic crowding method by
deriving an entirely new genetic algorithm class.

graphic*

You can learn a great deal by watching the genetic algorithm evolve. This example has a simple X
windows interface that lets you start, stop, restart, and incrementally evolve a population of indivdiuals.
You can see the evolution in action, so it becomes very obvious if your operators are not working
correctly or if the algorithm is converging prematurely.

The directory contains two different examples. In the first you can choose between 3 different genetic
algorithms, 2 different genomes (real or binary-to-decimal), and 4 different functions. In the second you
can watch a population of routes evolve for the travelling salesman problem. Both programs use X
resources as well as command-line arguments to control their behavior. You can also use a standard
GAlib settings file. These programs will compile using either the Motif or the athena widget set.

gnu?

This directory contains the code for an example that uses the BitString object from the GNU class library.
The example illustrates how to incorporate an existing object (in this case the BitString) into a GAlib
Genome type. The gnu directory contains the source code needed for the BitString object (taken from the
GNU library) plus the two files (bitstr.h and bitstr.C) needed to define the new genome type and the
example file that runs the GA (gnuex.C).

pvm nd?!

This directory contains code that illustrates how to use GAlib with PVM in a master-slave configuration
wherein the master process is the genetic algorithm with a single population and each slave process is a
genome evaluator. The master sends individual genomes to the slave processes to be evaluated then the
slaves return the evaluations.

pvnpop*

This directory contains code that illustrates a PVM implementation of parallel populations. The master
process initiates a cluster of slaves each of which contains a single population. The master process
harvests individuals from all of the distributed populations. With a few modifications you can also use
this example with the deme GA from example 25 (it uses migration to distribute diversity between

pops).
randt est

Use this program to verify that the random number generator is generating suitably random numbers
on your machine. This is by no means a comprehensive random number testor, but it will give you
some idea of how well GAlib's random number generator is working.

! These examples are included only in the UNIX distribution.

GAlib Version 2.4, Document Revision B 101 19-Aug-96



